Localization of a robot using particle filter with range and bearing information

Tae Gyun Kim, Hyun-Taek Choi, N. Ko
{"title":"Localization of a robot using particle filter with range and bearing information","authors":"Tae Gyun Kim, Hyun-Taek Choi, N. Ko","doi":"10.1109/URAI.2013.6677389","DOIUrl":null,"url":null,"abstract":"This paper reports a localization method based on particle filter with range and bearing information for fixed landmarks. The method consists of motion model which predicts pose of a robot, sensor model which evaluates the predicted pose, and resampling which modifies the evaluated pose. The proposed particle filter method utilizes bearing information as well as range information. The results of a simulation show trajectories for estimated robot location. Also, there is a result for comparison of performances using the proposed method and extended Kalman filter based method.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper reports a localization method based on particle filter with range and bearing information for fixed landmarks. The method consists of motion model which predicts pose of a robot, sensor model which evaluates the predicted pose, and resampling which modifies the evaluated pose. The proposed particle filter method utilizes bearing information as well as range information. The results of a simulation show trajectories for estimated robot location. Also, there is a result for comparison of performances using the proposed method and extended Kalman filter based method.
基于距离和方位信息的粒子滤波机器人定位
本文提出了一种基于粒子滤波的定位方法,结合距离和方位信息对固定地标进行定位。该方法由预测机器人姿态的运动模型、评估预测姿态的传感器模型和修改评估姿态的重采样组成。所提出的粒子滤波方法利用了方位信息和距离信息。仿真结果显示了估计机器人位置的轨迹。并将该方法与基于扩展卡尔曼滤波的方法进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信