Development of a Subsystem for Steganalysis of Digital Images Based on a Convolutional Neural Network to Detect and Prevent Attacks Using Hidden Steganographic Channels
{"title":"Development of a Subsystem for Steganalysis of Digital Images Based on a Convolutional Neural Network to Detect and Prevent Attacks Using Hidden Steganographic Channels","authors":"E. Yandashevskaya","doi":"10.21293/1818-0442-2021-24-2-29-33","DOIUrl":null,"url":null,"abstract":"This article presents a way to implement the subsystem for steganalysis of digital images circulating in the information system. This subsystem expands the functionality of existing intrusion detection / prevention systems in terms of detecting covert channels used in computer attacks. In the presented solution, a parametric model of a convolutional neural network is proposed and implemented to detect a payload in digital images, performed by a number of steg-nesting algorithms recognized in real attacks. A software implementation of a modular generator of a training sample (dataset) that supports these algorithms has been developed. An experimental assessment of the accuracy has been carried out","PeriodicalId":273068,"journal":{"name":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tomsk State University of Control Systems and Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21293/1818-0442-2021-24-2-29-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a way to implement the subsystem for steganalysis of digital images circulating in the information system. This subsystem expands the functionality of existing intrusion detection / prevention systems in terms of detecting covert channels used in computer attacks. In the presented solution, a parametric model of a convolutional neural network is proposed and implemented to detect a payload in digital images, performed by a number of steg-nesting algorithms recognized in real attacks. A software implementation of a modular generator of a training sample (dataset) that supports these algorithms has been developed. An experimental assessment of the accuracy has been carried out