Active inference for retrieval in camera networks

Daozheng Chen, M. Bilgic, L. Getoor, D. Jacobs, Lilyana Mihalkova, Tom Yeh
{"title":"Active inference for retrieval in camera networks","authors":"Daozheng Chen, M. Bilgic, L. Getoor, D. Jacobs, Lilyana Mihalkova, Tom Yeh","doi":"10.1109/POV.2011.5712363","DOIUrl":null,"url":null,"abstract":"We address the problem of searching camera network videos to retrieve frames containing specified individuals. We show the benefit of utilizing a learned probabilistic model that captures dependencies among the cameras. In addition, we develop an active inference framework that can request human input at inference time, directing human attention to the portions of the videos whose correct annotation would provide the biggest performance improvements. Our primary contribution is to show that by mapping video frames in a camera network onto a graphical model, we can apply collective classification and active inference algorithms to significantly increase the performance of the retrieval system, while minimizing the number of human annotations required.","PeriodicalId":197184,"journal":{"name":"2011 IEEE Workshop on Person-Oriented Vision","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Person-Oriented Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POV.2011.5712363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We address the problem of searching camera network videos to retrieve frames containing specified individuals. We show the benefit of utilizing a learned probabilistic model that captures dependencies among the cameras. In addition, we develop an active inference framework that can request human input at inference time, directing human attention to the portions of the videos whose correct annotation would provide the biggest performance improvements. Our primary contribution is to show that by mapping video frames in a camera network onto a graphical model, we can apply collective classification and active inference algorithms to significantly increase the performance of the retrieval system, while minimizing the number of human annotations required.
基于摄像机网络的主动推理检索
我们解决了搜索摄像机网络视频以检索包含特定个体的帧的问题。我们展示了利用学习概率模型捕获相机之间的依赖关系的好处。此外,我们开发了一个主动推理框架,可以在推理时请求人工输入,将人类的注意力引导到视频的正确注释将提供最大性能改进的部分。我们的主要贡献是通过将摄像机网络中的视频帧映射到图形模型上,我们可以应用集体分类和主动推理算法来显着提高检索系统的性能,同时最小化所需的人工注释的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信