A 1.5nJ/cls Unsupervised Online Learning Classifier for Seizure Detection

A. Chua, M. I. Jordan, R. Muller
{"title":"A 1.5nJ/cls Unsupervised Online Learning Classifier for Seizure Detection","authors":"A. Chua, M. I. Jordan, R. Muller","doi":"10.23919/VLSICircuits52068.2021.9492392","DOIUrl":null,"url":null,"abstract":"This work presents a 1.5 nJ/classification (nJ/cls) seizure detection classifier which provides unsupervised online updates on an initial offline-trained regression model to achieve >97% average sensitivity and specificity on 27 patient datasets, including three that have >250 hours of continuous recording. The classifier was fabricated in 28nm CMOS and operates at 0.5V supply. Through hardware optimizations and low overall computational complexity and voltage scaling, the online learning classifier achieves 24× better energy per classification and occupies 10x lower area than state-of-the-art.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This work presents a 1.5 nJ/classification (nJ/cls) seizure detection classifier which provides unsupervised online updates on an initial offline-trained regression model to achieve >97% average sensitivity and specificity on 27 patient datasets, including three that have >250 hours of continuous recording. The classifier was fabricated in 28nm CMOS and operates at 0.5V supply. Through hardware optimizations and low overall computational complexity and voltage scaling, the online learning classifier achieves 24× better energy per classification and occupies 10x lower area than state-of-the-art.
一种1.5nJ/cls的癫痫检测无监督在线学习分类器
这项工作提出了一个1.5 nJ/classification (nJ/cls)的癫痫检测分类器,该分类器在初始离线训练的回归模型上提供无监督的在线更新,在27个患者数据集上实现了>97%的平均灵敏度和特异性,其中包括三个具有>250小时连续记录的数据集。该分级器采用28nm CMOS制作,工作电压为0.5V。通过硬件优化和较低的整体计算复杂度和电压缩放,在线学习分类器每次分类的能量比现有分类器高24倍,占用的面积比现有分类器低10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信