EEG Signals Classification Based on Wavelet Packet and Ensemble Extreme Learning Machine

Min Han, Zhuoran Sun, Jun Wang
{"title":"EEG Signals Classification Based on Wavelet Packet and Ensemble Extreme Learning Machine","authors":"Min Han, Zhuoran Sun, Jun Wang","doi":"10.1109/MCSI.2015.30","DOIUrl":null,"url":null,"abstract":"To solve the problem of unstable predicted results and poor generalization ability when a single extreme learning machine is treated as a classifier, this paper puts forward a classification algorithm using ensemble Extreme Learning Machine based on linear discriminant analysis. The main idea is applying linear discriminant analysis on each subset of the training samples generated by bootstrapping. By this way, a subset of the larger diversities can be got, which increases the diversity between each machine and reduces the ensemble generalization error and redundant data. Wavelet packet is used to extract features, and the proposed algorithm is used for EEG signal classification. The experiments results with the UCI datasets and another publicly available datasets show that compared with traditional methods and others, the proposed method can significantly improve the classification accuracy and stability, and produce better generalization performance.","PeriodicalId":371635,"journal":{"name":"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2015.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To solve the problem of unstable predicted results and poor generalization ability when a single extreme learning machine is treated as a classifier, this paper puts forward a classification algorithm using ensemble Extreme Learning Machine based on linear discriminant analysis. The main idea is applying linear discriminant analysis on each subset of the training samples generated by bootstrapping. By this way, a subset of the larger diversities can be got, which increases the diversity between each machine and reduces the ensemble generalization error and redundant data. Wavelet packet is used to extract features, and the proposed algorithm is used for EEG signal classification. The experiments results with the UCI datasets and another publicly available datasets show that compared with traditional methods and others, the proposed method can significantly improve the classification accuracy and stability, and produce better generalization performance.
基于小波包和集成极限学习机的脑电信号分类
为了解决将单个极值学习机作为分类器时预测结果不稳定、泛化能力差的问题,本文提出了一种基于线性判别分析的集成极值学习机分类算法。其主要思想是对由自举生成的训练样本的每个子集进行线性判别分析。通过这种方法,可以得到较大多样性的子集,增加了各机器之间的多样性,减少了集成泛化误差和冗余数据。采用小波包提取特征,并将该算法用于脑电信号分类。UCI数据集和其他公开数据集的实验结果表明,与传统方法和其他方法相比,所提出的方法可以显著提高分类精度和稳定性,并产生更好的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信