{"title":"Logic Synthesis of Binarized Neural Networks for Efficient Circuit Implementation","authors":"Chia-Chih Chi, J. H. Jiang","doi":"10.1145/3240765.3240822","DOIUrl":null,"url":null,"abstract":"Neural networks (NNs) are key to deep learning systems. Their efficient hardware implementation is crucial to applications at the edge. Binarized NNs (BNNs), where the weights and output of a neuron are of binary values {–1, +1} (or encoded in {0, 1}), have been proposed recently. As no multiplier is required, they are particularly attractive and suitable for hardware realization. Most prior NN synthesis methods target on hardware architectures with neural processing elements (NPEs), where the weights of a neuron are loaded and the output of the neuron is computed. The load-and-compute method, though area efficient, requires expensive memory access, which deteriorates energy and performance efficiency. In this work we aim at synthesizing BNN dense layers into dedicated logic circuits. We formulate the corresponding matrix covering problem and propose a scalable algorithm to reduce the area and routing cost of BNNs. Experimental results justify the effectiveness of the method in terms of area and net savings on FPGA implementation. Our method provides an alternative implementation of BNNs, and can be applied in combination with NPE-based implementation for area, speed, and power tradeoffs.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Neural networks (NNs) are key to deep learning systems. Their efficient hardware implementation is crucial to applications at the edge. Binarized NNs (BNNs), where the weights and output of a neuron are of binary values {–1, +1} (or encoded in {0, 1}), have been proposed recently. As no multiplier is required, they are particularly attractive and suitable for hardware realization. Most prior NN synthesis methods target on hardware architectures with neural processing elements (NPEs), where the weights of a neuron are loaded and the output of the neuron is computed. The load-and-compute method, though area efficient, requires expensive memory access, which deteriorates energy and performance efficiency. In this work we aim at synthesizing BNN dense layers into dedicated logic circuits. We formulate the corresponding matrix covering problem and propose a scalable algorithm to reduce the area and routing cost of BNNs. Experimental results justify the effectiveness of the method in terms of area and net savings on FPGA implementation. Our method provides an alternative implementation of BNNs, and can be applied in combination with NPE-based implementation for area, speed, and power tradeoffs.