Constructing completely integrable fields by a generalized-streamlines method

A. Marini, T. Otway
{"title":"Constructing completely integrable fields by a generalized-streamlines method","authors":"A. Marini, T. Otway","doi":"10.4310/CIS.2013.V13.N3.A3","DOIUrl":null,"url":null,"abstract":"The classical approach to visualizing a flow, in terms of its streamlines, motivates a topological/soft-analytic argument for constrained variational equations. In its full generality, that argument provides an explicit formula for completely integrable solutions to a broad class of n-dimensional quasilinear exterior systems. In particular, it yields explicit solutions for extremal surfaces in Minkowski space and for Born--Infeld models.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CIS.2013.V13.N3.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The classical approach to visualizing a flow, in terms of its streamlines, motivates a topological/soft-analytic argument for constrained variational equations. In its full generality, that argument provides an explicit formula for completely integrable solutions to a broad class of n-dimensional quasilinear exterior systems. In particular, it yields explicit solutions for extremal surfaces in Minkowski space and for Born--Infeld models.
用广义流线法构造完全可积域
根据流线来可视化流的经典方法激发了约束变分方程的拓扑/软解析论证。在其充分的普遍性中,该论证为一类广泛的n维拟线性外部系统的完全可积解提供了一个显式公式。特别地,它给出了Minkowski空间和Born- Infeld模型的极值曲面的显式解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信