A Survey on Using Nature Inspired Computing for Fatal Disease Diagnosis

Prableen Kaur, Manik Sharma
{"title":"A Survey on Using Nature Inspired Computing for Fatal Disease Diagnosis","authors":"Prableen Kaur, Manik Sharma","doi":"10.4018/IJISMD.2017040105","DOIUrl":null,"url":null,"abstract":"GeneticAlgorithms(GA),AntColonyOptimization(ACO),ParticleSwarmOptimization(PSO) and Artificial Bee Colonies (ABC) are some vital nature inspired computing (NIC) techniques. Theseapproacheshavebeenusedinearlyprophecyofvariousdiseases.Thisarticleanalyzesthe efficacyofvariousNICtechniquesindiagnosingdiversecriticalhumandisorders.Itisobserved thatGA,ACO,PSOandABChavebeensuccessfullyusedinearlydiagnosisofdifferentdiseases. Ascompared toACO,PSOandABCalgorithms,GAhasbeenextensivelyused indiagnosisof ecology,cardiologyandendocrinologist.Inaddition,fromthelastsixyearsofresearch,ithasbeen observedthattheaccuracyaccomplishedusingGA,ACO,PSOandABCintheearlydiagnosisof cancer,diabetesandcardioproblemsliesbetween73.5%-99.7%,70%-99.2%,80%-98%and76.4% to99.98%respectively.Furthermore,ACO,PSOandABCarefoundtobebestsuitedindiagnosing lung,prostateandbreastcancerrespectively.Moreover,thehybriduseofNICtechniquesproduces betterresultsascomparedtotheirindividualuse. KeywoRDS Ant Colony Optimization, Artificial Bee Colony, Cancer, Diabetes, Disease Diagnosis, Genetic Algorithm, Heart Disease, Nature Inspired Techniques, Particle Swarm Optimization","PeriodicalId":289800,"journal":{"name":"Int. J. Inf. Syst. Model. Des.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Model. Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJISMD.2017040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

GeneticAlgorithms(GA),AntColonyOptimization(ACO),ParticleSwarmOptimization(PSO) and Artificial Bee Colonies (ABC) are some vital nature inspired computing (NIC) techniques. Theseapproacheshavebeenusedinearlyprophecyofvariousdiseases.Thisarticleanalyzesthe efficacyofvariousNICtechniquesindiagnosingdiversecriticalhumandisorders.Itisobserved thatGA,ACO,PSOandABChavebeensuccessfullyusedinearlydiagnosisofdifferentdiseases. Ascompared toACO,PSOandABCalgorithms,GAhasbeenextensivelyused indiagnosisof ecology,cardiologyandendocrinologist.Inaddition,fromthelastsixyearsofresearch,ithasbeen observedthattheaccuracyaccomplishedusingGA,ACO,PSOandABCintheearlydiagnosisof cancer,diabetesandcardioproblemsliesbetween73.5%-99.7%,70%-99.2%,80%-98%and76.4% to99.98%respectively.Furthermore,ACO,PSOandABCarefoundtobebestsuitedindiagnosing lung,prostateandbreastcancerrespectively.Moreover,thehybriduseofNICtechniquesproduces betterresultsascomparedtotheirindividualuse. KeywoRDS Ant Colony Optimization, Artificial Bee Colony, Cancer, Diabetes, Disease Diagnosis, Genetic Algorithm, Heart Disease, Nature Inspired Techniques, Particle Swarm Optimization
自然启发计算在致命疾病诊断中的应用综述
GeneticAlgorithms(GA),AntColonyOptimization(ACO),ParticleSwarmOptimization(PSO)和人工蜜蜂殖民地(ABC)是一些重要的自然启发的计算技术。Theseapproacheshavebeenusedinearlyprophecyofvariousdiseases。Thisarticleanalyzesthe efficacyofvariousNICtechniquesindiagnosingdiversecriticalhumandisorders。Itisobserved thatGA,ACO,PSOandABChavebeensuccessfullyusedinearlydiagnosisofdifferentdiseases。Ascompared toACO,PSOandABCalgorithms,GAhasbeenextensivelyused indiagnosisof生态,cardiologyandendocrinologist。Inaddition,fromthelastsixyearsofresearch,ithasbeen observedthattheaccuracyaccomplishedusingGA,ACO,PSOandABCintheearlydiagnosisof癌症,diabetesandcardioproblemsliesbetween73.5%-99.7%,70%-99.2%,80%-98%and76.4% to99.98%respectively。Furthermore,ACO,PSOandABCarefoundtobebestsuitedindiagnosing肺,prostateandbreastcancerrespectively。Moreover,thehybriduseofNICtechniquesproduces betterresultsascomparedtotheirindividualuse。关键词:蚁群优化,人工蜂群,癌症,糖尿病,疾病诊断,遗传算法,心脏病,自然启发技术,粒子群优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信