Classification of Breast Cancer using User-Defined Weighted Ensemble Voting Scheme

Ajay Kumar, R. Sushil, A. Tiwari
{"title":"Classification of Breast Cancer using User-Defined Weighted Ensemble Voting Scheme","authors":"Ajay Kumar, R. Sushil, A. Tiwari","doi":"10.1109/TENCON54134.2021.9707374","DOIUrl":null,"url":null,"abstract":"When weak classifiers, i.e., estimators, are not justifying the classification of breast cancer then ensemble learning is a way to improve the classification of cancer. The ensemble is basically an aggregator where all weak classifiers are merged to get a strong classifier. The ensemble is based on a majority voting scheme. A hard voting scheme is used to take a major vote of each classifier whereas a soft voting scheme takes the weights of the probability of each classifier. A custom based weights are assigned in this paper and the final classification of cancer using ensemble classifier is outperformed than each estimator. The highest accuracy from the proposed ensemble classifier is achieved up to 96.47% where the lowest estimator got 93.18 %. The AUC score of ensemble classifier achieved is 0.9948 which is one of the highest among all other estimators.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When weak classifiers, i.e., estimators, are not justifying the classification of breast cancer then ensemble learning is a way to improve the classification of cancer. The ensemble is basically an aggregator where all weak classifiers are merged to get a strong classifier. The ensemble is based on a majority voting scheme. A hard voting scheme is used to take a major vote of each classifier whereas a soft voting scheme takes the weights of the probability of each classifier. A custom based weights are assigned in this paper and the final classification of cancer using ensemble classifier is outperformed than each estimator. The highest accuracy from the proposed ensemble classifier is achieved up to 96.47% where the lowest estimator got 93.18 %. The AUC score of ensemble classifier achieved is 0.9948 which is one of the highest among all other estimators.
基于用户自定义加权集合投票方案的乳腺癌分类
当弱分类器,即估计器不能证明乳腺癌的分类时,集成学习是一种改进癌症分类的方法。集成基本上是一个聚合器,其中所有弱分类器被合并以获得强分类器。该集合基于多数投票方案。硬投票方案用于对每个分类器进行主要投票,而软投票方案用于对每个分类器的概率进行权重。本文给出了一个基于自定义的权重,使用集成分类器对癌症进行最终分类的效果优于每个估计器。综合分类器的最高准确率达到96.47%,最低估计器的准确率为93.18%。集成分类器的AUC得分为0.9948,是所有估计器中最高的之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信