A Multi-GPU Framework for In-Memory Text Data Analytics

P. K. Chong, E. Karuppiah, K. Yong
{"title":"A Multi-GPU Framework for In-Memory Text Data Analytics","authors":"P. K. Chong, E. Karuppiah, K. Yong","doi":"10.1109/WAINA.2013.238","DOIUrl":null,"url":null,"abstract":"Current application of GPU processors for parallel computing tasks show excellent results in terms of speed-ups compared to CPU processors. However, there is no existing framework that enables automatic distribution of data and processing across multiple GPUs, modularity of kernel design, and efficient co-usage of CPU and GPU processors. All these elements are necessary conditions to enable users to easily perform 'Big Data' analysis, and to create their own modules for their desired processing functionality. We propose a framework for in-memory 'Big Text Data' analytics that provides mechanisms for automatic data segmentation, distribution, execution, and result retrieval across multiple cards (CPU, GPU & FPGA) and machines, and a modular design for easy addition of new GPU kernels. The architecture and components of the framework such as multi-card data distribution and execution, data structures for efficient memory access, algorithms for parallel GPU computation, and result retrieval are described in detail, and some of the kernels in the framework are evaluated using Big Data versus multi-core CPUs to demonstrate the performance and feasibility of using it for 'Big Data' analytics, providing alternative and cheaper HPC solution.","PeriodicalId":359251,"journal":{"name":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2013.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Current application of GPU processors for parallel computing tasks show excellent results in terms of speed-ups compared to CPU processors. However, there is no existing framework that enables automatic distribution of data and processing across multiple GPUs, modularity of kernel design, and efficient co-usage of CPU and GPU processors. All these elements are necessary conditions to enable users to easily perform 'Big Data' analysis, and to create their own modules for their desired processing functionality. We propose a framework for in-memory 'Big Text Data' analytics that provides mechanisms for automatic data segmentation, distribution, execution, and result retrieval across multiple cards (CPU, GPU & FPGA) and machines, and a modular design for easy addition of new GPU kernels. The architecture and components of the framework such as multi-card data distribution and execution, data structures for efficient memory access, algorithms for parallel GPU computation, and result retrieval are described in detail, and some of the kernels in the framework are evaluated using Big Data versus multi-core CPUs to demonstrate the performance and feasibility of using it for 'Big Data' analytics, providing alternative and cheaper HPC solution.
内存文本数据分析的多gpu框架
与CPU处理器相比,当前GPU处理器在并行计算任务中的应用在加速方面表现出优异的效果。然而,目前还没有一个框架能够实现跨多个GPU的数据和处理的自动分布、内核设计的模块化以及CPU和GPU处理器的有效协同使用。所有这些元素都是使用户能够轻松执行“大数据”分析的必要条件,并为他们所需的处理功能创建自己的模块。我们提出了一个内存“大文本数据”分析框架,该框架提供了跨多个卡(CPU, GPU和FPGA)和机器的自动数据分割,分发,执行和结果检索机制,以及易于添加新GPU内核的模块化设计。详细描述了框架的架构和组件,如多卡数据分发和执行、高效内存访问的数据结构、并行GPU计算算法和结果检索,并使用大数据和多核cpu对框架中的一些内核进行了评估,以展示将其用于“大数据”分析的性能和可行性,提供替代和更便宜的HPC解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信