Binary kernel matrices of maximum exponents of polar codes of dimensions up to sixteen

Hsien-Ping Lin, Shu Lin, K. Abdel-Ghaffar
{"title":"Binary kernel matrices of maximum exponents of polar codes of dimensions up to sixteen","authors":"Hsien-Ping Lin, Shu Lin, K. Abdel-Ghaffar","doi":"10.1109/ITA.2015.7308970","DOIUrl":null,"url":null,"abstract":"The pioneering work of Arikan on polar codes is based on a kernel matrix of dimension two and exponent 0.5. To achieve larger exponent in order to improve performance, kernel matrices of larger dimensions are considered. In this paper, constructions of binary kernel matrices of dimensions up to 16 with maximum exponents are presented. The results show that the minimum dimension for which there exists a kernel matrix with exponent greater than 0.5, i.e., exceeds the exponent of the kernel matrix proposed by Arikan, is 15.","PeriodicalId":150850,"journal":{"name":"2015 Information Theory and Applications Workshop (ITA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2015.7308970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The pioneering work of Arikan on polar codes is based on a kernel matrix of dimension two and exponent 0.5. To achieve larger exponent in order to improve performance, kernel matrices of larger dimensions are considered. In this paper, constructions of binary kernel matrices of dimensions up to 16 with maximum exponents are presented. The results show that the minimum dimension for which there exists a kernel matrix with exponent greater than 0.5, i.e., exceeds the exponent of the kernel matrix proposed by Arikan, is 15.
最大维数为16的极码的最大指数的二进制核矩阵
Arikan在极码上的开创性工作是基于一个维数为2,指数为0.5的核矩阵。为了获得更大的指数以提高性能,需要考虑更大维度的核矩阵。本文给出了具有最大指数的16维二进制核矩阵的构造。结果表明,存在一个指数大于0.5的核矩阵,即超过Arikan提出的核矩阵的指数的最小维数为15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信