Summarizing Sets of Related ML-Driven Recommendations for Improving File Management in Cloud Storage

Will Brackenbury, K. Chard, Aaron J. Elmore, Blase Ur
{"title":"Summarizing Sets of Related ML-Driven Recommendations for Improving File Management in Cloud Storage","authors":"Will Brackenbury, K. Chard, Aaron J. Elmore, Blase Ur","doi":"10.1145/3526113.3545704","DOIUrl":null,"url":null,"abstract":"Personal cloud storage systems increasingly offer recommendations to help users retrieve or manage files of interest. For example, Google Drive’s Quick Access predicts and surfaces files likely to be accessed. However, when multiple, related recommendations are made, interfaces typically present recommended files and any accompanying explanations individually, burdening users. To improve the usability of ML-driven personal information management systems, we propose a new method for summarizing related file-management recommendations. We generate succinct summaries of groups of related files being recommended. Summaries reference the files’ shared characteristics. Through a within-subjects online study in which participants received recommendations for groups of files in their own Google Drive, we compare our summaries to baselines like visualizing a decision tree model or simply listing the files in a group. Compared to the baselines, participants expressed greater understanding and confidence in accepting recommendations when shown our novel recommendation summaries.","PeriodicalId":200048,"journal":{"name":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526113.3545704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Personal cloud storage systems increasingly offer recommendations to help users retrieve or manage files of interest. For example, Google Drive’s Quick Access predicts and surfaces files likely to be accessed. However, when multiple, related recommendations are made, interfaces typically present recommended files and any accompanying explanations individually, burdening users. To improve the usability of ML-driven personal information management systems, we propose a new method for summarizing related file-management recommendations. We generate succinct summaries of groups of related files being recommended. Summaries reference the files’ shared characteristics. Through a within-subjects online study in which participants received recommendations for groups of files in their own Google Drive, we compare our summaries to baselines like visualizing a decision tree model or simply listing the files in a group. Compared to the baselines, participants expressed greater understanding and confidence in accepting recommendations when shown our novel recommendation summaries.
总结了改进云存储中文件管理的相关ml驱动建议集
个人云存储系统越来越多地提供建议,帮助用户检索或管理感兴趣的文件。例如,Google Drive的Quick Access可以预测并显示可能被访问的文件。然而,当提出多个相关的建议时,界面通常单独显示推荐文件和任何附带的解释,这给用户带来了负担。为了提高机器学习驱动的个人信息管理系统的可用性,我们提出了一种新的方法来总结相关的文件管理建议。我们生成被推荐的相关文件组的简洁摘要。摘要引用文件的共享特征。通过一项主题内在线研究,参与者在他们自己的Google Drive中收到对文件组的建议,我们将我们的总结与基线进行比较,如可视化决策树模型或简单列出一组文件。与基线相比,当看到我们新颖的推荐摘要时,参与者对接受推荐表现出更大的理解和信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信