Combining top-down and bottom-up visual saliency for firearms localization

E. Ardizzone, R. Gallea, M. Cascia, G. Mazzola
{"title":"Combining top-down and bottom-up visual saliency for firearms localization","authors":"E. Ardizzone, R. Gallea, M. Cascia, G. Mazzola","doi":"10.5220/0005054300250032","DOIUrl":null,"url":null,"abstract":"Object detection is one of the most challenging issues for computer vision researchers. The analysis of the human visual attention mechanisms can help automatic inspection systems, in order to discard useless information and improving performances and efficiency. In this paper we proposed our attention based method to estimate firearms position in images of people holding firearms. Both top-down and bottom-up mechanisms are involved in our system. The bottom-up analysis is based on a state-of-the-art approach. The top-down analysis is based on the construction of a probabilistic model of the firearms position with respect to the people's face position. This model has been created by analyzing information from of a public available database of movie frames representing actors holding firearms.","PeriodicalId":438702,"journal":{"name":"2014 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005054300250032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Object detection is one of the most challenging issues for computer vision researchers. The analysis of the human visual attention mechanisms can help automatic inspection systems, in order to discard useless information and improving performances and efficiency. In this paper we proposed our attention based method to estimate firearms position in images of people holding firearms. Both top-down and bottom-up mechanisms are involved in our system. The bottom-up analysis is based on a state-of-the-art approach. The top-down analysis is based on the construction of a probabilistic model of the firearms position with respect to the people's face position. This model has been created by analyzing information from of a public available database of movie frames representing actors holding firearms.
结合自顶向下和自底向上视觉显著性的枪械定位
目标检测是计算机视觉研究人员面临的最具挑战性的问题之一。对人的视觉注意机制的分析可以帮助自动检测系统,以丢弃无用的信息,提高性能和效率。本文提出了一种基于注意力的方法来估计持枪人图像中的枪支位置。自上而下和自下而上的机制都包含在我们的系统中。自底向上的分析基于最先进的方法。自顶向下的分析是建立枪支位置相对于人的面部位置的概率模型。这个模型是通过分析来自一个公开的数据库的信息而创建的,这个数据库中有代表演员持有枪支的电影帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信