Analysis of Quantization Across DNN Accelerator Architecture Paradigms

Tom Glint, C. Jha, M. Awasthi, Joycee Mekie
{"title":"Analysis of Quantization Across DNN Accelerator Architecture Paradigms","authors":"Tom Glint, C. Jha, M. Awasthi, Joycee Mekie","doi":"10.23919/DATE56975.2023.10136899","DOIUrl":null,"url":null,"abstract":"Quantization techniques promise to significantly reduce the latency, energy, and area associated with multiplier hardware. This work, to the best of our knowledge, for the first time, shows the system-level impact of quantization on SOTA DNN accelerators from different digital accelerator paradigms. Based on the placement of data and compute site, we identify SOTA designs from Conventional Hardware Accelerators (CHA), Near Data Processors (NDP), and Processing-in-Memory (PIM) paradigms and show the impact of quantization when inferencing CNN and Fully Connected Layer (FCL) workloads. We show that the 32-bit implementation of SOTA from PIM consumes less energy than the 8-bit implementation of SOTA from CHA for FCL, while the trend reverses for CNN workloads. Further, PIM has stable latency while scaling the word size while CHA and NDP suffer 20% to $2\\times$ slow down for doubling word size.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10136899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantization techniques promise to significantly reduce the latency, energy, and area associated with multiplier hardware. This work, to the best of our knowledge, for the first time, shows the system-level impact of quantization on SOTA DNN accelerators from different digital accelerator paradigms. Based on the placement of data and compute site, we identify SOTA designs from Conventional Hardware Accelerators (CHA), Near Data Processors (NDP), and Processing-in-Memory (PIM) paradigms and show the impact of quantization when inferencing CNN and Fully Connected Layer (FCL) workloads. We show that the 32-bit implementation of SOTA from PIM consumes less energy than the 8-bit implementation of SOTA from CHA for FCL, while the trend reverses for CNN workloads. Further, PIM has stable latency while scaling the word size while CHA and NDP suffer 20% to $2\times$ slow down for doubling word size.
跨DNN加速器架构范式的量化分析
量化技术有望显著减少与乘法器硬件相关的延迟、能量和面积。据我们所知,这项工作首次展示了来自不同数字加速器范例的量化对SOTA DNN加速器的系统级影响。基于数据和计算站点的放置,我们从传统硬件加速器(CHA)、近数据处理器(NDP)和内存中处理(PIM)范式中识别出SOTA设计,并在推断CNN和完全连接层(FCL)工作负载时显示量化的影响。我们表明,对于FCL,来自PIM的32位SOTA实现比来自CHA的8位SOTA实现消耗的能量更少,而对于CNN工作负载,趋势相反。此外,PIM在扩展字长时具有稳定的延迟,而CHA和NDP在加倍字长时会遭受20%至2倍的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信