Weakly Supervised Temporal Action Localization Through Contrastive Learning

Chengzhe Yang, Weigang Zhang
{"title":"Weakly Supervised Temporal Action Localization Through Contrastive Learning","authors":"Chengzhe Yang, Weigang Zhang","doi":"10.1109/MIPR54900.2022.00075","DOIUrl":null,"url":null,"abstract":"In recent years, weakly-supervised temporal action localization (WS-TAL) with only video-level annotations, which aims to learn whether each untrimmed video contains action frames gains more attention. Existing most WS-TAL methods especially rely on features learned for action localization. Therefore, it is important to improve the ability to separate the frames of action instances from the background frames. To address this challenge, this paper introduces a framework that learns two extra constraints, Action-Background Learning and Action-Foreground Learning. The former aims at maximizing the discrepancy inside the feature of action and background while the latter avoids the misjudgement of action instance. We evaluate the proposed model on two benchmark datasets, and the experimental results show that the method could gain comparable performance with current state-of-the-art WS-TAL methods.","PeriodicalId":228640,"journal":{"name":"2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR54900.2022.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, weakly-supervised temporal action localization (WS-TAL) with only video-level annotations, which aims to learn whether each untrimmed video contains action frames gains more attention. Existing most WS-TAL methods especially rely on features learned for action localization. Therefore, it is important to improve the ability to separate the frames of action instances from the background frames. To address this challenge, this paper introduces a framework that learns two extra constraints, Action-Background Learning and Action-Foreground Learning. The former aims at maximizing the discrepancy inside the feature of action and background while the latter avoids the misjudgement of action instance. We evaluate the proposed model on two benchmark datasets, and the experimental results show that the method could gain comparable performance with current state-of-the-art WS-TAL methods.
基于对比学习的弱监督时间动作定位
近年来,仅使用视频级注释的弱监督时态动作定位(WS-TAL)得到了越来越多的关注,该方法旨在了解每个未修剪的视频是否包含动作帧。现有的大多数WS-TAL方法特别依赖于为操作本地化学习的特性。因此,提高从背景帧中分离动作实例帧的能力是很重要的。为了应对这一挑战,本文引入了一个学习两个额外约束的框架,即行动背景学习和行动前景学习。前者旨在最大限度地缩小行为特征与背景之间的差异,后者则避免对行为实例的误判。我们在两个基准数据集上对所提出的模型进行了评估,实验结果表明该方法可以获得与当前最先进的WS-TAL方法相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信