{"title":"Rapid Wear of Shell Liner Due to Severe Abrasion","authors":"","doi":"10.31399/asm.fach.modes.c0047347","DOIUrl":null,"url":null,"abstract":"\n A high-chromium white cast iron shell liner installed in an ore crusher sustained impact damage in the course of operation. Visual-optical examination revealed horizontal cracks on the surface of the liner along with particles that had fractured off. Metallographic examination indicated a heavily deformed surface layer with chip formation at the wear surface. The chemical composition of the liner was found to be Fe-2.74C-0.75Mn-0.55Si-0.51Ni-19.4Cr-1.15M. This alloy is highly resistant to abrasive wear, yet at the same time, prone to chipping because little plastic displacement will occur at the surface. The liner failed as a result of severe abrasion caused by the impact of taconite rock. This was a material-selection problem in that the wrong alloy was used for a condition not anticipated in the original choice.","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c0047347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A high-chromium white cast iron shell liner installed in an ore crusher sustained impact damage in the course of operation. Visual-optical examination revealed horizontal cracks on the surface of the liner along with particles that had fractured off. Metallographic examination indicated a heavily deformed surface layer with chip formation at the wear surface. The chemical composition of the liner was found to be Fe-2.74C-0.75Mn-0.55Si-0.51Ni-19.4Cr-1.15M. This alloy is highly resistant to abrasive wear, yet at the same time, prone to chipping because little plastic displacement will occur at the surface. The liner failed as a result of severe abrasion caused by the impact of taconite rock. This was a material-selection problem in that the wrong alloy was used for a condition not anticipated in the original choice.