An improved KNN text classification algorithm based on density

Kansheng Shi, Lemin Li, Haitao Liu, Jie He, Naitong Zhang, Wentao Song
{"title":"An improved KNN text classification algorithm based on density","authors":"Kansheng Shi, Lemin Li, Haitao Liu, Jie He, Naitong Zhang, Wentao Song","doi":"10.1109/CCIS.2011.6045043","DOIUrl":null,"url":null,"abstract":"Text classification has gained booming interest over the past few years. As a simple, effective and nonparametric classification method, KNN method is widely used in document classification. However, the uneven distribution in training set will affect the KNN classified result negatively. Moreover, the uneven distribution phenomenon of text is very common in documents on the Web. To tackling on this, this paper proposes an improved KNN method denoted by DBKNN. Experimental results show that the DBKNN algorithm can better serve classification requests for large sets of unevenly distributed documents.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Text classification has gained booming interest over the past few years. As a simple, effective and nonparametric classification method, KNN method is widely used in document classification. However, the uneven distribution in training set will affect the KNN classified result negatively. Moreover, the uneven distribution phenomenon of text is very common in documents on the Web. To tackling on this, this paper proposes an improved KNN method denoted by DBKNN. Experimental results show that the DBKNN algorithm can better serve classification requests for large sets of unevenly distributed documents.
基于密度的改进KNN文本分类算法
在过去的几年中,文本分类获得了蓬勃发展的兴趣。KNN方法作为一种简单有效的非参数分类方法,在文献分类中得到了广泛的应用。然而,训练集的不均匀分布会对KNN分类结果产生负面影响。此外,文本的不均匀分布现象在Web上的文档中非常普遍。为了解决这个问题,本文提出了一种改进的KNN方法,称为DBKNN。实验结果表明,DBKNN算法可以更好地服务于大量不均匀分布文档的分类请求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信