DRS-UNET: A Deep Learning Approach for Diabetic Retinopathy Detection and Segmentation from Fundus Images

R. Gound, B. Sundaram, S. B. V., Peerzada Anzar Azmat, Malik Najeeb Ul Habib, Avni Garg
{"title":"DRS-UNET: A Deep Learning Approach for Diabetic Retinopathy Detection and Segmentation from Fundus Images","authors":"R. Gound, B. Sundaram, S. B. V., Peerzada Anzar Azmat, Malik Najeeb Ul Habib, Avni Garg","doi":"10.1109/INCET57972.2023.10170686","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy (DR) is the main cause of blindness in working-age adults around the world. Early detection and treatment of DR are critical for preventing vision loss. Image segmentation is a critical step in automated DR detection. UNET is a well-known convolutional neural network design for image segmentation. The typical UNET architecture, on the other hand, may not necessarily be appropriate for DR detection. This study introduces DRS UNET, an unique architecture specifically built for DR detection. DRS UNET incorporates residual blocks and attention mechanisms to improve feature extraction and segmentation performance. The proposed model is trained and tested using publically available datasets, yielding cutting-edge results.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10170686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic Retinopathy (DR) is the main cause of blindness in working-age adults around the world. Early detection and treatment of DR are critical for preventing vision loss. Image segmentation is a critical step in automated DR detection. UNET is a well-known convolutional neural network design for image segmentation. The typical UNET architecture, on the other hand, may not necessarily be appropriate for DR detection. This study introduces DRS UNET, an unique architecture specifically built for DR detection. DRS UNET incorporates residual blocks and attention mechanisms to improve feature extraction and segmentation performance. The proposed model is trained and tested using publically available datasets, yielding cutting-edge results.
DRS-UNET:一种基于深度学习的糖尿病视网膜病变眼底图像检测与分割方法
糖尿病视网膜病变(DR)是全世界工作年龄成年人失明的主要原因。早期发现和治疗DR对于预防视力丧失至关重要。图像分割是自动DR检测的关键步骤。UNET是一种著名的用于图像分割的卷积神经网络。另一方面,典型的UNET架构不一定适合DR检测。本研究介绍了DRS UNET,一种专门用于DR检测的独特架构。DRS UNET结合残差块和注意机制,提高了特征提取和分割性能。所提出的模型使用公开可用的数据集进行训练和测试,产生尖端的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信