{"title":"Time-Varying Formation Control for Time-Delayed Multi-Agent Systems with General Linear Dynamics and Switching Topologies","authors":"Wei Xiao, Jianglong Yu, Rui Wang, Xiwang Dong, Qingdong Li, Z. Ren","doi":"10.1142/S2301385019400016","DOIUrl":null,"url":null,"abstract":"Time-varying formation analysis and design problems for general linear multi-agent systems with switching interaction topologies and time-varying delays are studied. Firstly, a consensus-based formation control protocol is constructed using local information of the neighboring agents. An algorithm with three steps is presented to design the proposed formation control protocol. Then, based on linear matrix inequality technique and common Lyapunove–Krasovskii stability theory, sufficient conditions for general linear multi-agent systems with switching topologies and time-varying delays to achieve time-varying formation are given together with a time-varying formation feasibility condition. Finally, a numerical simulation is given to demonstrate the effectiveness of the obtained theoretical results.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2301385019400016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Time-varying formation analysis and design problems for general linear multi-agent systems with switching interaction topologies and time-varying delays are studied. Firstly, a consensus-based formation control protocol is constructed using local information of the neighboring agents. An algorithm with three steps is presented to design the proposed formation control protocol. Then, based on linear matrix inequality technique and common Lyapunove–Krasovskii stability theory, sufficient conditions for general linear multi-agent systems with switching topologies and time-varying delays to achieve time-varying formation are given together with a time-varying formation feasibility condition. Finally, a numerical simulation is given to demonstrate the effectiveness of the obtained theoretical results.