Text summarization using Secretary problem

Harsh Mehta, S. Bharti, Nishant Doshi
{"title":"Text summarization using Secretary problem","authors":"Harsh Mehta, S. Bharti, Nishant Doshi","doi":"10.1109/iSSSC56467.2022.10051552","DOIUrl":null,"url":null,"abstract":"Automatic text summarization is a long-running program, a crucial part of NLP(Natural language processing), which is again a subpart of Artificial Intelligence(AI). Many successful research techniques have been invented for summarization purposes. We propose a unique concept to generate the summary using the secretary problem, which comes under the extractive text summarization method. We divide the document text into two parts. We will match our text with the main title in the first part. If the main title’s words match the document text sentence, maintain those sentences in one of the lists. We will apply the secretary problem in other sentences that do not have title words. Combined with other sentence generation methods, the Secretary problem will guarantee the best candidate one-third of the time or 37%. This article presents our concept of leveraging a mathematical model to generate a summary that does not include some important sentences.","PeriodicalId":334645,"journal":{"name":"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSSSC56467.2022.10051552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic text summarization is a long-running program, a crucial part of NLP(Natural language processing), which is again a subpart of Artificial Intelligence(AI). Many successful research techniques have been invented for summarization purposes. We propose a unique concept to generate the summary using the secretary problem, which comes under the extractive text summarization method. We divide the document text into two parts. We will match our text with the main title in the first part. If the main title’s words match the document text sentence, maintain those sentences in one of the lists. We will apply the secretary problem in other sentences that do not have title words. Combined with other sentence generation methods, the Secretary problem will guarantee the best candidate one-third of the time or 37%. This article presents our concept of leveraging a mathematical model to generate a summary that does not include some important sentences.
文本摘要使用秘书问题
自动文本摘要是一个长期运行的程序,是NLP(自然语言处理)的重要组成部分,也是人工智能(AI)的一个子部分。许多成功的研究方法都是为了总结的目的而发明的。本文提出了一种利用秘书问题生成摘要的独特概念,该概念属于抽取文本摘要方法。我们将文档文本分为两部分。我们将把我们的文章与第一部分的主要标题相匹配。如果主标题的单词与文档文本句子匹配,则将这些句子保存在其中一个列表中。我们将把秘书问题应用到其他没有标题词的句子中。结合其他句子生成方法,秘书问题将保证三分之一的时间或37%的最佳候选人。本文介绍了利用数学模型生成不包含某些重要句子的摘要的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信