An iterative ellipsoid-based anomaly detection technique for intrusion detection systems

S. Suthaharan
{"title":"An iterative ellipsoid-based anomaly detection technique for intrusion detection systems","authors":"S. Suthaharan","doi":"10.1109/SECON.2012.6196956","DOIUrl":null,"url":null,"abstract":"Intrusion detection datasets play a major role in evaluating machine learning techniques for Intrusion Detection Systems. The Intrusion detection datasets are generally very large and contain many noncontributing features and redundant data. These drawbacks lead to inaccurate intrusion detection and increased computational cost when machine learning techniques are evaluated. Several data cleaning techniques have been proposed to eliminate redundant records and noncontributing features. These techniques reduce the size of the datasets significantly and make the characteristics of the data closer to the characteristics of intrusions in a real network. This paper identifies anomaly problems in normal and intrusion attacks data, and proposes an ellipsoid-based technique to detect anomalies and clean the intrusion detection datasets further. Publically available KDD'99 and NSL-KDD datasets are used to demonstrate its performance. It reveals an interesting property, i.e. monotonically decreasing behavior, of the NSL-KDD dataset.","PeriodicalId":187091,"journal":{"name":"2012 Proceedings of IEEE Southeastcon","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of IEEE Southeastcon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2012.6196956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Intrusion detection datasets play a major role in evaluating machine learning techniques for Intrusion Detection Systems. The Intrusion detection datasets are generally very large and contain many noncontributing features and redundant data. These drawbacks lead to inaccurate intrusion detection and increased computational cost when machine learning techniques are evaluated. Several data cleaning techniques have been proposed to eliminate redundant records and noncontributing features. These techniques reduce the size of the datasets significantly and make the characteristics of the data closer to the characteristics of intrusions in a real network. This paper identifies anomaly problems in normal and intrusion attacks data, and proposes an ellipsoid-based technique to detect anomalies and clean the intrusion detection datasets further. Publically available KDD'99 and NSL-KDD datasets are used to demonstrate its performance. It reveals an interesting property, i.e. monotonically decreasing behavior, of the NSL-KDD dataset.
基于迭代椭球的入侵检测系统异常检测技术
入侵检测数据集在评估入侵检测系统的机器学习技术方面发挥着重要作用。入侵检测数据集通常非常大,并且包含许多非贡献特征和冗余数据。在评估机器学习技术时,这些缺点会导致不准确的入侵检测和增加的计算成本。已经提出了几种数据清理技术来消除冗余记录和非贡献特性。这些技术显著减小了数据集的大小,使数据的特征更接近真实网络中的入侵特征。本文识别了正常攻击和入侵攻击数据中的异常问题,提出了一种基于椭球体的异常检测技术,进一步对入侵检测数据集进行异常检测和清理。使用公开可用的KDD'99和NSL-KDD数据集来演示其性能。它揭示了NSL-KDD数据集的一个有趣的特性,即单调递减行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信