Trajectory clustering based on length scale directive Hausdorff

Jiuyue Hao, Lei Gao, Xuan Zhao, Pengfei Li, PengJu Xing, Xinye Zhang
{"title":"Trajectory clustering based on length scale directive Hausdorff","authors":"Jiuyue Hao, Lei Gao, Xuan Zhao, Pengfei Li, PengJu Xing, Xinye Zhang","doi":"10.1109/ITSC.2013.6728277","DOIUrl":null,"url":null,"abstract":"Trajectory clustering is the basis of scene understanding which helps interpretation of object behavior or event detection in video surveillance system. This paper proposes a length scale directive Hausdorff (LSD-Hausdorff) trajectory similarity measure. Firstly, the trajectory is encoded, and then we use proportion corresponding set, object position and its instantaneous velocity direction to represent the distance between two trajectories. After that, the hierarchical clustering algorithm is applied to cluster trajectories. In each cluster, trajectories that are spatially close have similar velocities of motion and represent one type of activity pattern. Finally, through experimental results in true scenes, we proved the accuracy and effectiveness of the proposed method in clustering.","PeriodicalId":275768,"journal":{"name":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2013.6728277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Trajectory clustering is the basis of scene understanding which helps interpretation of object behavior or event detection in video surveillance system. This paper proposes a length scale directive Hausdorff (LSD-Hausdorff) trajectory similarity measure. Firstly, the trajectory is encoded, and then we use proportion corresponding set, object position and its instantaneous velocity direction to represent the distance between two trajectories. After that, the hierarchical clustering algorithm is applied to cluster trajectories. In each cluster, trajectories that are spatially close have similar velocities of motion and represent one type of activity pattern. Finally, through experimental results in true scenes, we proved the accuracy and effectiveness of the proposed method in clustering.
基于长度尺度指令Hausdorff的轨迹聚类
在视频监控系统中,轨迹聚类是场景理解的基础,有助于物体行为的解释或事件的检测。本文提出了一种长度尺度指令Hausdorff (LSD-Hausdorff)轨迹相似性测度。首先对轨迹进行编码,然后利用比例对应集、目标位置及其瞬时速度方向来表示两条轨迹之间的距离。然后,将层次聚类算法应用于聚类轨迹。在每个簇中,空间上接近的轨迹具有相似的运动速度,并代表一种活动模式。最后,通过真实场景的实验结果,验证了该方法聚类的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信