Strain Rate Tensor estimation in cine cardiac MRI based on elastic image registration

Gonzalo Vegas-Sánchez-Ferrero, A. Tristán-Vega, Lucilio Cordero-Grande, P. Casaseca-de-la-Higuera, S. Aja‐Fernández, M. Martín-Fernández, C. Alberola-López
{"title":"Strain Rate Tensor estimation in cine cardiac MRI based on elastic image registration","authors":"Gonzalo Vegas-Sánchez-Ferrero, A. Tristán-Vega, Lucilio Cordero-Grande, P. Casaseca-de-la-Higuera, S. Aja‐Fernández, M. Martín-Fernández, C. Alberola-López","doi":"10.1109/CVPRW.2008.4562968","DOIUrl":null,"url":null,"abstract":"In this paper we propose an alternative method to estimate and visualize the strain rate tensor (ST) in magnetic resonance images (MRI) when phase contrast MRI (PCMRI) and tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, an elastic image registration algorithm is used to estimate the movement of the myocardium at each point. Our experiments with real data prove that the registration algorithm provides a useful deformation field to estimate the ST fields. A classification between regional normal and dysfunctional contraction patterns, as compared with professional diagnosis, points out that the parameters extracted from the estimated ST can represent these patterns.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4562968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we propose an alternative method to estimate and visualize the strain rate tensor (ST) in magnetic resonance images (MRI) when phase contrast MRI (PCMRI) and tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, an elastic image registration algorithm is used to estimate the movement of the myocardium at each point. Our experiments with real data prove that the registration algorithm provides a useful deformation field to estimate the ST fields. A classification between regional normal and dysfunctional contraction patterns, as compared with professional diagnosis, points out that the parameters extracted from the estimated ST can represent these patterns.
基于弹性图像配准的电影心脏MRI应变率张量估计
在本文中,我们提出了一种替代方法来估计和可视化在磁共振图像(MRI)应变速率张量(ST),当相位对比MRI (PCMRI)和标记MRI (TMRI)不可用。这种选择是基于图像处理技术。具体而言,使用弹性图像配准算法估计心肌在每个点的运动。实际数据实验证明,该配准算法为估计ST场提供了一个有用的形变场。区域正常和功能失调收缩模式之间的分类,与专业诊断相比,指出从估计ST提取的参数可以代表这些模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信