Kohonen self organizing maps and expert system for blood classification

N. Elfadil, M. K. Hani, S. M. Nor, S. Hussein
{"title":"Kohonen self organizing maps and expert system for blood classification","authors":"N. Elfadil, M. K. Hani, S. M. Nor, S. Hussein","doi":"10.1109/TENCON.2001.949575","DOIUrl":null,"url":null,"abstract":"Information gathering in medicine generally follows a set of sequence: an interview with the patient, an examination, and one or more laboratory tests to support the working diagnosis. Building a knowledge base from observing a medical examination, however, is risky. Medical decision-making relies on imprecise information gathered in a variety of ways and interpreted in a largely intuitive fashion. This paper proposes a novel method that integrates neural network and expert system paradigms to produce an automated knowledge acquisition system. This system will produce symbolic knowledge from medical data automatically.","PeriodicalId":358168,"journal":{"name":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2001.949575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Information gathering in medicine generally follows a set of sequence: an interview with the patient, an examination, and one or more laboratory tests to support the working diagnosis. Building a knowledge base from observing a medical examination, however, is risky. Medical decision-making relies on imprecise information gathered in a variety of ways and interpreted in a largely intuitive fashion. This paper proposes a novel method that integrates neural network and expert system paradigms to produce an automated knowledge acquisition system. This system will produce symbolic knowledge from medical data automatically.
Kohonen自组织地图与血液分类专家系统
医学中的信息收集通常遵循一套顺序:与患者面谈,检查,以及一项或多项支持有效诊断的实验室检查。然而,通过观察医学检查来建立知识库是有风险的。医疗决策依赖于以各种方式收集的不精确信息,并在很大程度上以直觉方式解释。本文提出了一种将神经网络和专家系统相结合的方法来实现自动化知识获取系统。该系统将从医疗数据中自动生成符号知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信