No-Reference Image Quality Assessment Using Texture Information Banks

P. Freitas, W. Y. L. Akamine, Mylène C. Q. Farias
{"title":"No-Reference Image Quality Assessment Using Texture Information Banks","authors":"P. Freitas, W. Y. L. Akamine, Mylène C. Q. Farias","doi":"10.1109/BRACIS.2016.033","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new no-reference quality assessment method which uses a machine learning technique based on texture analysis. The proposed method compares test images with texture images of a public database. Local Binary Patterns (LBPs) are used as local texture feature descriptors. With a Csiszár-Morimoto divergence measure, the histograms of the LBPs of the test images are compared with the histograms of the LBPs of the database texture images, generating a set of difference measures. These difference measures are used to blindly predict the quality of an image. Experimental results show that the proposed method is fast and has a good quality prediction power, outperforming other no-reference image quality assessment methods.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a new no-reference quality assessment method which uses a machine learning technique based on texture analysis. The proposed method compares test images with texture images of a public database. Local Binary Patterns (LBPs) are used as local texture feature descriptors. With a Csiszár-Morimoto divergence measure, the histograms of the LBPs of the test images are compared with the histograms of the LBPs of the database texture images, generating a set of difference measures. These difference measures are used to blindly predict the quality of an image. Experimental results show that the proposed method is fast and has a good quality prediction power, outperforming other no-reference image quality assessment methods.
使用纹理信息库的无参考图像质量评估
本文提出了一种基于纹理分析的机器学习的无参考质量评价方法。该方法将测试图像与公共数据库的纹理图像进行比较。局部二值模式(lbp)被用作局部纹理特征描述符。通过Csiszár-Morimoto散度度量,将测试图像的lbp直方图与数据库纹理图像的lbp直方图进行比较,生成一组差分度量。这些差异度量被用来盲目地预测图像的质量。实验结果表明,该方法速度快,具有良好的质量预测能力,优于其他无参考图像质量评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信