Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior

Ville A. Satopaa, Jeannie R. Albrecht, David E. Irwin, B. Raghavan
{"title":"Finding a \"Kneedle\" in a Haystack: Detecting Knee Points in System Behavior","authors":"Ville A. Satopaa, Jeannie R. Albrecht, David E. Irwin, B. Raghavan","doi":"10.1109/ICDCSW.2011.20","DOIUrl":null,"url":null,"abstract":"Computer systems often reach a point at which the relative cost to increase some tunable parameter is no longer worth the corresponding performance benefit. These ``knees'' typically represent beneficial points that system designers have long selected to best balance inherent trade-offs. While prior work largely uses ad hoc, system-specific approaches to detect knees, we present Kneedle, a general approach to on line and off line knee detection that is applicable to a wide range of systems. We define a knee formally for continuous functions using the mathematical concept of curvature and compare our definition against alternatives. We then evaluate Kneedle's accuracy against existing algorithms on both synthetic and real data sets, and evaluate its performance in two different applications.","PeriodicalId":133514,"journal":{"name":"2011 31st International Conference on Distributed Computing Systems Workshops","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"676","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 31st International Conference on Distributed Computing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW.2011.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 676

Abstract

Computer systems often reach a point at which the relative cost to increase some tunable parameter is no longer worth the corresponding performance benefit. These ``knees'' typically represent beneficial points that system designers have long selected to best balance inherent trade-offs. While prior work largely uses ad hoc, system-specific approaches to detect knees, we present Kneedle, a general approach to on line and off line knee detection that is applicable to a wide range of systems. We define a knee formally for continuous functions using the mathematical concept of curvature and compare our definition against alternatives. We then evaluate Kneedle's accuracy against existing algorithms on both synthetic and real data sets, and evaluate its performance in two different applications.
在干草堆中找到“膝盖”:检测系统行为中的膝盖点
计算机系统经常达到这样一个点,即增加某些可调参数的相对成本不再值得相应的性能收益。这些“膝盖”通常代表系统设计师长期选择的有利点,以最好地平衡固有的权衡。虽然之前的工作主要使用临时的、系统特定的方法来检测膝盖,但我们提出了kneeedle,这是一种在线和离线膝盖检测的通用方法,适用于广泛的系统。我们使用曲率的数学概念正式定义了连续函数的膝,并将我们的定义与其他定义进行了比较。然后,我们在合成数据集和真实数据集上对比现有算法评估Kneedle的准确性,并评估其在两种不同应用中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信