{"title":"Multi-branch and two-pass HMM modeling approaches for off-line cursive handwriting recognition","authors":"Wenwei Wang, A. Brakensiek, A. Kosmala, G. Rigoll","doi":"10.1109/ICDAR.2001.953789","DOIUrl":null,"url":null,"abstract":"Because of large shape variations in human handwriting, cursive handwriting recognition remains a challenging task. Usually, the recognition performance depends crucially upon the pre-processing steps, e.g. the word baseline detection and segmentation process. Hidden Markov models (HMMs) have the ability to model similarities and variations among samples of a class. In this paper, we present a multi-branch HMM modeling method and an HMM-based two-pass modeling approach. Whereas the multi-branch HMM method makes the resulting system more robust with word baseline detection, the two-pass recognition approach exploits the segmentation ability of the Viterbi algorithm and creates another HMM set and carries out a second recognition pass. The total performance is enhanced by the combination of the two recognition passes. Experiments recognizing cursive handwritten words with a 30,000-word lexicon have been carried out. The results demonstrate that our novel approaches achieve better recognition performance and reduce the relative error rate significantly.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Because of large shape variations in human handwriting, cursive handwriting recognition remains a challenging task. Usually, the recognition performance depends crucially upon the pre-processing steps, e.g. the word baseline detection and segmentation process. Hidden Markov models (HMMs) have the ability to model similarities and variations among samples of a class. In this paper, we present a multi-branch HMM modeling method and an HMM-based two-pass modeling approach. Whereas the multi-branch HMM method makes the resulting system more robust with word baseline detection, the two-pass recognition approach exploits the segmentation ability of the Viterbi algorithm and creates another HMM set and carries out a second recognition pass. The total performance is enhanced by the combination of the two recognition passes. Experiments recognizing cursive handwritten words with a 30,000-word lexicon have been carried out. The results demonstrate that our novel approaches achieve better recognition performance and reduce the relative error rate significantly.