Parameter-free Regression-based Autonomous Control of Off-the-shelf Quadrotor UAVs

Rahul Peddi, N. Bezzo
{"title":"Parameter-free Regression-based Autonomous Control of Off-the-shelf Quadrotor UAVs","authors":"Rahul Peddi, N. Bezzo","doi":"10.1109/ICUAS.2019.8798034","DOIUrl":null,"url":null,"abstract":"Autonomous flight in unmanned aerial vehicles (UAVs) generally requires platform-specific knowledge of the dynamical parameters and control architecture. Recently, UAVs have become more accessible with off-the-shelf options that are well-tuned and stable for user teleoperation but due to unknown model parameters, they are typically not ready for autonomous operations. In this paper, we develop a method to enable autonomous flight on vehicles that are designed for teleoperation with minimal knowledge of the dynamical and controller parameters. The proposed method uses a basic knowledge of the control and dynamic architecture along with human teleoperated trajectories as demonstrations to train a thin-plate spline (TPS) regression model, which is then used to manipulate the pre-trained commands to generate new autonomous input commands for autonomous navigation over new trajectories. A statistical approach is also presented together with a satisfiability modulo theories (SMT) solver to assess the learned prediction error and correct to minimize errors in the input generation. A robust control-based strategy is also proposed to adjust autonomous input commands during run-time for closed loop trajectory tracking. Finally, we validate the proposed approach with trajectory-following experiments on a quadrotor UAV.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8798034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Autonomous flight in unmanned aerial vehicles (UAVs) generally requires platform-specific knowledge of the dynamical parameters and control architecture. Recently, UAVs have become more accessible with off-the-shelf options that are well-tuned and stable for user teleoperation but due to unknown model parameters, they are typically not ready for autonomous operations. In this paper, we develop a method to enable autonomous flight on vehicles that are designed for teleoperation with minimal knowledge of the dynamical and controller parameters. The proposed method uses a basic knowledge of the control and dynamic architecture along with human teleoperated trajectories as demonstrations to train a thin-plate spline (TPS) regression model, which is then used to manipulate the pre-trained commands to generate new autonomous input commands for autonomous navigation over new trajectories. A statistical approach is also presented together with a satisfiability modulo theories (SMT) solver to assess the learned prediction error and correct to minimize errors in the input generation. A robust control-based strategy is also proposed to adjust autonomous input commands during run-time for closed loop trajectory tracking. Finally, we validate the proposed approach with trajectory-following experiments on a quadrotor UAV.
基于无参数回归的四旋翼无人机自主控制
无人驾驶飞行器(uav)的自主飞行通常需要平台特定的动态参数和控制体系结构知识。最近,无人机已经变得更容易获得现成的选项,这些选项对用户远程操作进行了很好的调整和稳定,但由于未知的模型参数,它们通常不适合自主操作。在本文中,我们开发了一种方法,使自主飞行的车辆设计为远程操作,以最小的动态和控制器参数的知识。该方法使用控制和动态架构的基本知识以及人类远程操作轨迹作为演示来训练薄板样条(TPS)回归模型,然后使用该模型来操作预训练的命令以生成新的自主输入命令,用于在新轨迹上进行自主导航。提出了一种统计方法,并结合可满足模理论(SMT)求解器来评估学习到的预测误差,并对输入生成中的误差进行修正以使误差最小化。提出了一种鲁棒控制策略,在运行时调整自主输入命令,实现闭环轨迹跟踪。最后,在四旋翼无人机上进行了轨迹跟踪实验,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信