Performance Analysis of Supervised Classifiers Using PCA Based Techniques on Breast Cancer

Zohaib Mushtaq, Akbari Yaqub, Ali Hassan, S. Su
{"title":"Performance Analysis of Supervised Classifiers Using PCA Based Techniques on Breast Cancer","authors":"Zohaib Mushtaq, Akbari Yaqub, Ali Hassan, S. Su","doi":"10.1109/CEET1.2019.8711868","DOIUrl":null,"url":null,"abstract":"Focus of this paper is to recognize tumorous (malignant) and non-tumorous (benign) from the dataset. Wisconsin breast cancer data (WBCD) has been used and taken from UCI machine learning repository. Most popular supervised learning classifiers with PCA based dimensionality rebate techniques applied. Support Vector Machine, K Nearest Neighbor, Decision Tree, Naïve Bayes and Logistic Regression used with Linear, Sigmoid, Cosine, Poly and Radial basis function based PCA's. Numerous performance metrics tested after getting confusion matrix. Among them accuracy, sensitivity, specificity, false positive rate, false omission rate, precision, prevalence, f1-score, negative predicted value, false negative rate, false discovery rate and markedness. Our best performing models then relatively compared with other existing models. Sigmoid based Naïve Bayes exhibits best accuracy of 99.20%.K Nearest Neighbor also illustrate superb performance with all kernel PCA based techniques. Accuracy ranges from 96.4% to 97.8%","PeriodicalId":207523,"journal":{"name":"2019 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEET1.2019.8711868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Focus of this paper is to recognize tumorous (malignant) and non-tumorous (benign) from the dataset. Wisconsin breast cancer data (WBCD) has been used and taken from UCI machine learning repository. Most popular supervised learning classifiers with PCA based dimensionality rebate techniques applied. Support Vector Machine, K Nearest Neighbor, Decision Tree, Naïve Bayes and Logistic Regression used with Linear, Sigmoid, Cosine, Poly and Radial basis function based PCA's. Numerous performance metrics tested after getting confusion matrix. Among them accuracy, sensitivity, specificity, false positive rate, false omission rate, precision, prevalence, f1-score, negative predicted value, false negative rate, false discovery rate and markedness. Our best performing models then relatively compared with other existing models. Sigmoid based Naïve Bayes exhibits best accuracy of 99.20%.K Nearest Neighbor also illustrate superb performance with all kernel PCA based techniques. Accuracy ranges from 96.4% to 97.8%
基于PCA的监督分类器在乳腺癌诊断中的性能分析
本文的重点是从数据集中识别肿瘤(恶性)和非肿瘤(良性)。威斯康星乳腺癌数据(WBCD)已被使用并从UCI机器学习存储库中获取。最流行的监督学习分类器与基于PCA的维数回扣技术的应用。支持向量机,K近邻,决策树,Naïve贝叶斯和逻辑回归与线性,Sigmoid,余弦,聚和径向基函数基于PCA的使用。获得混淆矩阵后测试了许多性能指标。其中准确性、敏感性、特异性、假阳性率、假遗漏率、精密度、患病率、f1评分、阴性预测值、假阴性率、假发现率、标记性。然后将我们的最佳模型与其他现有模型进行比较。基于Sigmoid的Naïve贝叶斯准确率最高,为99.20%。K最近邻也说明了高超的性能与所有核PCA为基础的技术。准确率在96.4%到97.8%之间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信