Multiple extended target tracking based on GLMB filter and gibbs sampler

Yimei Chen, Weifeng Liu, Xudong Wang
{"title":"Multiple extended target tracking based on GLMB filter and gibbs sampler","authors":"Yimei Chen, Weifeng Liu, Xudong Wang","doi":"10.1109/ICCAIS.2017.8217587","DOIUrl":null,"url":null,"abstract":"In this paper, a new multiple extended target tracking learning algorithm based on labelled random finite sets (L-RFS) framework is proposed to estimate the number, shape and state of extended targets under clutter conditions. The algorithm mainly includes two aspects: multi-extended target dynamic modeling and multi-extended target tracking estimates. Firstly, a finite mixture model (FMM) of extended target is established under the generalized labelled multi-bernoulli (GLMB) filter. Learning the parameters of finite mixture model by Gibbs sampling and Bayesian information criterion (BIC), and then equivalent point target measurements are used in place of the actual extended target measurements. Finally, the proposed ellipse approximation model is used to realize the estimation of the extended target shape. The simulation results show that the proposed algorithm can effectively track the multiple extended targets and obtain the shape of extended target.","PeriodicalId":410094,"journal":{"name":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2017.8217587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a new multiple extended target tracking learning algorithm based on labelled random finite sets (L-RFS) framework is proposed to estimate the number, shape and state of extended targets under clutter conditions. The algorithm mainly includes two aspects: multi-extended target dynamic modeling and multi-extended target tracking estimates. Firstly, a finite mixture model (FMM) of extended target is established under the generalized labelled multi-bernoulli (GLMB) filter. Learning the parameters of finite mixture model by Gibbs sampling and Bayesian information criterion (BIC), and then equivalent point target measurements are used in place of the actual extended target measurements. Finally, the proposed ellipse approximation model is used to realize the estimation of the extended target shape. The simulation results show that the proposed algorithm can effectively track the multiple extended targets and obtain the shape of extended target.
基于GLMB滤波器和gibbs采样器的多扩展目标跟踪
针对杂波条件下扩展目标的数量、形状和状态估计问题,提出了一种基于标记随机有限集(L-RFS)框架的扩展目标跟踪学习算法。该算法主要包括两个方面:多扩展目标动态建模和多扩展目标跟踪估计。首先,在广义标记多伯努利(GLMB)滤波器下建立了扩展目标的有限混合模型(FMM);通过Gibbs抽样和贝叶斯信息准则(BIC)学习有限混合模型的参数,然后用等效点目标测量代替实际的扩展目标测量。最后,利用所提出的椭圆近似模型实现了扩展目标形状的估计。仿真结果表明,该算法能够有效地跟踪多个扩展目标并获得扩展目标的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信