{"title":"Keystroke Dynamics","authors":"Senthil Kumar A. V., Rathi M.","doi":"10.1002/9780470997949.ch4","DOIUrl":null,"url":null,"abstract":"Online learning has entirely transformed the way of learning by the students. Online tests and quizzes play an important role in online learning, which provides accurate results to the instructor. But, the learners use different methods to cheat during online exams such as opening a browser to search for the answer or a document in the local drive, etc. They are not authenticated once they login and progress to attend the online exams. Different techniques are used in authenticating the students taking up the online exams such as audio or video surveillance systems, fingerprint, or iris recognition, etc. Keystroke dynamics-based authentication (KDA) method, a behavioral biometric-based authentication model has gained focus in authenticating the users. This chapter proposes the usage of KDA as a solution to user authentication in online exams and presents a detailed review on the processes of KDA, the factors that affect the performance of KDA, their applications in different domains, and a few keystroke dynamics-based datasets to authenticate the users during online exams.","PeriodicalId":422323,"journal":{"name":"Research Anthology on Developing Effective Online Learning Courses","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Developing Effective Online Learning Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470997949.ch4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Online learning has entirely transformed the way of learning by the students. Online tests and quizzes play an important role in online learning, which provides accurate results to the instructor. But, the learners use different methods to cheat during online exams such as opening a browser to search for the answer or a document in the local drive, etc. They are not authenticated once they login and progress to attend the online exams. Different techniques are used in authenticating the students taking up the online exams such as audio or video surveillance systems, fingerprint, or iris recognition, etc. Keystroke dynamics-based authentication (KDA) method, a behavioral biometric-based authentication model has gained focus in authenticating the users. This chapter proposes the usage of KDA as a solution to user authentication in online exams and presents a detailed review on the processes of KDA, the factors that affect the performance of KDA, their applications in different domains, and a few keystroke dynamics-based datasets to authenticate the users during online exams.