{"title":"LPV H-infinity controller design for variable-pitch variable-speed wind turbine","authors":"Xing-jia Yao, Chang-chun Guo, Yan Li","doi":"10.1109/IPEMC.2009.5157772","DOIUrl":null,"url":null,"abstract":"A new approach to design LPV robust gain scheduling controllers for a variable pitch variable speed wind turbine drive system is presented. The time-varying nonlinear model of the wind turbine is translated into a linear parameter varying (LPV) system with convex polyhedron version via the LPV convex decomposition technique. State feedback controller satisfying H∞ performance at every vertex of convex polyhedron parameter space can be numerically solved via linear matrix inequalities (LMI) approach. Using these designed controllers at every vertex, a LPV controller with smaller on-line calculating capacity is synthesized via convex decomposition techniques. Simulation results show better tracking performances and disturbance rejection abilities of the proposed controller than.","PeriodicalId":375971,"journal":{"name":"2009 IEEE 6th International Power Electronics and Motion Control Conference","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 6th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2009.5157772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
A new approach to design LPV robust gain scheduling controllers for a variable pitch variable speed wind turbine drive system is presented. The time-varying nonlinear model of the wind turbine is translated into a linear parameter varying (LPV) system with convex polyhedron version via the LPV convex decomposition technique. State feedback controller satisfying H∞ performance at every vertex of convex polyhedron parameter space can be numerically solved via linear matrix inequalities (LMI) approach. Using these designed controllers at every vertex, a LPV controller with smaller on-line calculating capacity is synthesized via convex decomposition techniques. Simulation results show better tracking performances and disturbance rejection abilities of the proposed controller than.