Unconditional convergence constants of Hilbert space frame expansions

P. Casazza, Richard G. Lynch, J. Tremain
{"title":"Unconditional convergence constants of Hilbert space frame expansions","authors":"P. Casazza, Richard G. Lynch, J. Tremain","doi":"10.1109/SAMPTA.2015.7148913","DOIUrl":null,"url":null,"abstract":"We will prove some new, fundamental results in frame theory by computing the unconditional constant (for all definitions of unconditional) for the frame expansion of a vector in a Hilbert space and see that it is √B/A, where A, B are the frame bounds of the frame. It follows that tight frames have unconditional constant one. We then generalize this to a classification of such frames by showing that for Bessel sequences whose frame operator can be diagonalized, the frame expansions have unconditional constant one if and only if the Bessel sequence is an orthogonal sum of tight frames. We then prove similar results for cross frame expansions but here the results are no longer a classification. We also give examples to show that our results are best possible. These results should have been done 20 years ago but somehow we overlooked this topic.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We will prove some new, fundamental results in frame theory by computing the unconditional constant (for all definitions of unconditional) for the frame expansion of a vector in a Hilbert space and see that it is √B/A, where A, B are the frame bounds of the frame. It follows that tight frames have unconditional constant one. We then generalize this to a classification of such frames by showing that for Bessel sequences whose frame operator can be diagonalized, the frame expansions have unconditional constant one if and only if the Bessel sequence is an orthogonal sum of tight frames. We then prove similar results for cross frame expansions but here the results are no longer a classification. We also give examples to show that our results are best possible. These results should have been done 20 years ago but somehow we overlooked this topic.
Hilbert空间框架展开的无条件收敛常数
我们将通过计算Hilbert空间中向量的坐标系展开的无条件常数(对于所有无条件的定义)来证明坐标系理论中一些新的、基本的结果,并看到它是√B/ a,其中a, B是坐标系的坐标系界。因此,紧系具有无条件常数1。然后,我们通过证明对于框架算子可对角化的贝塞尔序列,当且仅当贝塞尔序列是紧框架的正交和时,框架展开式具有无条件常数1,将其推广到此类框架的分类。然后,我们证明了跨框架展开的类似结果,但这里的结果不再是分类。我们还给出了一些例子来说明我们的结果是最好的。这些结果应该在20年前就完成了,但不知何故,我们忽视了这个话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信