Local Optimization Often is Ill-conditioned in Genetic Programming for Symbolic Regression

G. Kronberger
{"title":"Local Optimization Often is Ill-conditioned in Genetic Programming for Symbolic Regression","authors":"G. Kronberger","doi":"10.1109/SYNASC57785.2022.00055","DOIUrl":null,"url":null,"abstract":"Gradient-based local optimization has been shown to improve results of genetic programming (GP) for symbolic regression. Several state-of-the-art GP implementations use iterative nonlinear least squares (NLS) algorithms such as the Levenberg-Marquardt algorithm for local optimization. The effectiveness of NLS algorithms depends on appropriate scaling and conditioning of the optimization problem. This has so far been ignored in symbolic regression and GP literature. In this study we use a singular value decomposition of NLS Jacobian matrices to determine the numeric rank and the condition number. We perform experiments with a GP implementation and six different benchmark datasets. Our results show that rank-deficient and ill-conditioned Jacobian matrices occur frequently and for all datasets. The issue is less extreme when restricting GP tree size and when using many non-linear functions in the function set.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Gradient-based local optimization has been shown to improve results of genetic programming (GP) for symbolic regression. Several state-of-the-art GP implementations use iterative nonlinear least squares (NLS) algorithms such as the Levenberg-Marquardt algorithm for local optimization. The effectiveness of NLS algorithms depends on appropriate scaling and conditioning of the optimization problem. This has so far been ignored in symbolic regression and GP literature. In this study we use a singular value decomposition of NLS Jacobian matrices to determine the numeric rank and the condition number. We perform experiments with a GP implementation and six different benchmark datasets. Our results show that rank-deficient and ill-conditioned Jacobian matrices occur frequently and for all datasets. The issue is less extreme when restricting GP tree size and when using many non-linear functions in the function set.
符号回归遗传规划中的局部优化往往是病态的
基于梯度的局部优化可以改善遗传规划符号回归的求解结果。一些最先进的GP实现使用迭代非线性最小二乘(NLS)算法,如Levenberg-Marquardt算法进行局部优化。NLS算法的有效性取决于优化问题的适当尺度和条件。迄今为止,这在符号回归和GP文献中被忽视。在本研究中,我们使用NLS雅可比矩阵的奇异值分解来确定数值秩和条件数。我们使用GP实现和六个不同的基准数据集进行实验。我们的结果表明,秩缺陷和病态雅可比矩阵经常出现,并且适用于所有数据集。当限制GP树的大小和在函数集中使用许多非线性函数时,问题就不那么极端了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信