Subspace Tree

A. Wichert
{"title":"Subspace Tree","authors":"A. Wichert","doi":"10.1109/CBMI.2009.14","DOIUrl":null,"url":null,"abstract":"We are interested in designing a data structure for n objects of dimension d, with the following objectives: Space requirements should be  O(d * n) and the query time should be O(d * log(n)). Such a structure corresponds to subspace trees. A subspace tree divides the distances between the subspaces. It is realized by  the hierarchical linear subspace method. By doing so, the data is divided into disjoint entities. The asymptotic upper bound estimation of the maximum applicable number of subspaces is logarithmically constrained by the number of represented elements and their dimension.The search in such a tree starts at the subspace with the lowest dimension.  In this subspace, the set of all possible similar objects is determined. In the next subspace, additional metric information corresponding to a higher dimension is used to reduce this set.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We are interested in designing a data structure for n objects of dimension d, with the following objectives: Space requirements should be  O(d * n) and the query time should be O(d * log(n)). Such a structure corresponds to subspace trees. A subspace tree divides the distances between the subspaces. It is realized by  the hierarchical linear subspace method. By doing so, the data is divided into disjoint entities. The asymptotic upper bound estimation of the maximum applicable number of subspaces is logarithmically constrained by the number of represented elements and their dimension.The search in such a tree starts at the subspace with the lowest dimension.  In this subspace, the set of all possible similar objects is determined. In the next subspace, additional metric information corresponding to a higher dimension is used to reduce this set.
子树
我们有兴趣为d维的n个对象设计一个数据结构,其目标如下:空间需求应为O(d * n),查询时间应为O(d * log(n))。这种结构对应于子空间树。子空间树划分子空间之间的距离。该方法采用层次线性子空间方法实现。通过这样做,数据被划分为不相交的实体。子空间的最大可应用数目的渐近上界估计受表示元素的数目及其维数的对数约束。这种树的搜索从最低维的子空间开始。在这个子空间中,确定了所有可能的相似对象的集合。在下一个子空间中,使用与更高维度相对应的附加度量信息来约简该集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信