{"title":"Neural network control of an optimized regenerative motor drive for a lower-limb prosthesis","authors":"T. Barto, D. Simon","doi":"10.23919/ACC.2017.7963783","DOIUrl":null,"url":null,"abstract":"A voltage source converter (VSC) is incorporated in an active prosthetic leg design. The VSC supplies power to the prosthesis motor and regenerates energy from the prosthesis motor for storage in a supercapacitor bank. An artificial neural network controls the VSC switching so that the prosthesis motor generates a knee torque that matches the torque that is output from a passivity-based controller (PBC). The neural network, PBC, and prosthesis motor parameters are optimized with an evolutionary algorithm to achieve knee angle tracking. Several reference trajectories from able-bodied walking were tracked with an RMS tracking error of less than 0.5° while regenerating up to 67 Joules of energy during four gait cycles.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A voltage source converter (VSC) is incorporated in an active prosthetic leg design. The VSC supplies power to the prosthesis motor and regenerates energy from the prosthesis motor for storage in a supercapacitor bank. An artificial neural network controls the VSC switching so that the prosthesis motor generates a knee torque that matches the torque that is output from a passivity-based controller (PBC). The neural network, PBC, and prosthesis motor parameters are optimized with an evolutionary algorithm to achieve knee angle tracking. Several reference trajectories from able-bodied walking were tracked with an RMS tracking error of less than 0.5° while regenerating up to 67 Joules of energy during four gait cycles.