DYNAMICS OF THE THREE-QUBITS TAVIS — CUMMINGS MODEL

A. R. Bagrov, E. K. Bashkirov
{"title":"DYNAMICS OF THE THREE-QUBITS TAVIS — CUMMINGS MODEL","authors":"A. R. Bagrov, E. K. Bashkirov","doi":"10.18287/2541-7525-2022-28-1-2-95-105","DOIUrl":null,"url":null,"abstract":"In this article, we have studied the entanglement dynamics of three identical qubits (natural or artificial two-level atoms) resonantly interacting with the one mode of the thermal field of a microwave lossless resonator via one-photon transitions. An exact solution of the quantum time Schrodinger equation is found for the total wave function of the system for the initial separable and entangled states of qubits and the Fock initial state of the resonator. On the basis of this solution, an exact solution of the quantum Liouville equation for the total time-dependent density matrix of the system in the case of a thermal field of the resonator is constructed. The exact solution for the full density matrix is used to calculate the criterion of entanglement of pairs of qubits negativity. The resultsof numerical simulation of the time dependence of the negativity of pairs of qubits showed that with an increase in the intensity of the thermal resonator field, the degree of entanglement of pairs of qubits decreases. It is also shown that In the model under consideration, for any initial states of qubits and intensities of the thermal field of the resonator, the effect of sudden death of entanglement takes place. This behavior of the entanglement parameter in the model under consideration differs from that in the two-qubit model. For two-qubit model, the effect of the sudden death of entanglement takes place only for the initial entangled states of qubits and intense thermal fields of the resonator.","PeriodicalId":427884,"journal":{"name":"Vestnik of Samara University. Natural Science Series","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of Samara University. Natural Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7525-2022-28-1-2-95-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, we have studied the entanglement dynamics of three identical qubits (natural or artificial two-level atoms) resonantly interacting with the one mode of the thermal field of a microwave lossless resonator via one-photon transitions. An exact solution of the quantum time Schrodinger equation is found for the total wave function of the system for the initial separable and entangled states of qubits and the Fock initial state of the resonator. On the basis of this solution, an exact solution of the quantum Liouville equation for the total time-dependent density matrix of the system in the case of a thermal field of the resonator is constructed. The exact solution for the full density matrix is used to calculate the criterion of entanglement of pairs of qubits negativity. The resultsof numerical simulation of the time dependence of the negativity of pairs of qubits showed that with an increase in the intensity of the thermal resonator field, the degree of entanglement of pairs of qubits decreases. It is also shown that In the model under consideration, for any initial states of qubits and intensities of the thermal field of the resonator, the effect of sudden death of entanglement takes place. This behavior of the entanglement parameter in the model under consideration differs from that in the two-qubit model. For two-qubit model, the effect of the sudden death of entanglement takes place only for the initial entangled states of qubits and intense thermal fields of the resonator.
三量子位tavis - cummings模型的动力学
在本文中,我们研究了三个相同的量子比特(自然或人工两能级原子)通过单光子跃迁与微波无损谐振器热场的一个模式共振相互作用的纠缠动力学。在量子比特的初始可分态和纠缠态以及谐振腔的Fock初始态下,得到了系统的总波函数的量子时间薛定谔方程的精确解。在此基础上,构造了谐振腔热场情况下系统总时变密度矩阵的量子Liouville方程的精确解。利用全密度矩阵的精确解计算了量子比特对负纠缠的判据。对量子比特对负性的时间依赖性的数值模拟结果表明,随着热谐振场强度的增加,量子比特对的纠缠度减小。在所考虑的模型中,对于任何量子位元的初始状态和谐振腔热场的强度,都会发生纠缠的猝死效应。所考虑的模型中纠缠参数的这种行为与双量子位模型中的行为不同。对于双量子位模型,纠缠猝死效应只发生在量子位的初始纠缠态和谐振腔的强热场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信