Fast and Spatially-Smooth Terrain Classification Using Monocular Camera

Chetan Jakkoju, K. Krishna, C. V. Jawahar
{"title":"Fast and Spatially-Smooth Terrain Classification Using Monocular Camera","authors":"Chetan Jakkoju, K. Krishna, C. V. Jawahar","doi":"10.1109/ICPR.2010.987","DOIUrl":null,"url":null,"abstract":"In this paper, we present a monocular camera based terrain classification scheme. The uniqueness of the proposed scheme is that it inherently incorporates spatial smoothness while segmenting a image, without requirement of post-processing smoothing methods. The algorithm is extremely fast because it is build on top of a Random Forest classifier. We present comparison across features and classifiers. The baseline algorithm uses color, texture and their combination with classifiers such as SVM and Random Forests. We further enhance the algorithm through a label transfer method. The efficacy of the proposed solution can be seen as we reach a low error rates on both our dataset and other publicly available datasets.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we present a monocular camera based terrain classification scheme. The uniqueness of the proposed scheme is that it inherently incorporates spatial smoothness while segmenting a image, without requirement of post-processing smoothing methods. The algorithm is extremely fast because it is build on top of a Random Forest classifier. We present comparison across features and classifiers. The baseline algorithm uses color, texture and their combination with classifiers such as SVM and Random Forests. We further enhance the algorithm through a label transfer method. The efficacy of the proposed solution can be seen as we reach a low error rates on both our dataset and other publicly available datasets.
基于单目相机的快速空间平滑地形分类
本文提出了一种基于单目摄像机的地形分类方案。该方法的独特之处在于它在分割图像时固有地融合了空间平滑性,而不需要后处理平滑方法。该算法非常快,因为它是建立在随机森林分类器之上的。我们在特征和分类器之间进行比较。基线算法使用颜色、纹理及其与SVM和随机森林等分类器的组合。我们通过标签转移方法进一步增强了算法。所提出的解决方案的有效性可以看出,我们在我们的数据集和其他公开可用的数据集上都达到了低错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信