Spectrum Estimation of Heart Rate Variability Using Low-rank Matrix Completion

Lei Lu, T. Zhu, Yuan-ting Zhang, D. Clifton
{"title":"Spectrum Estimation of Heart Rate Variability Using Low-rank Matrix Completion","authors":"Lei Lu, T. Zhu, Yuan-ting Zhang, D. Clifton","doi":"10.1109/BHI56158.2022.9926897","DOIUrl":null,"url":null,"abstract":"Heart rate variability (HRV) is an important non-invasive parameter to assess the cardiac autonomic nervous system. In particular, spectrum matrices of HRV data have been widely used for physical and mental health monitoring. However, measurement uncertainties from data acquisition and physiological factors can easily affect the HRV spectrum and degrade outcomes of health monitoring. In this paper, we propose a new model for incomplete spectrum estimation of the HRV data based on matrix completion (MC). We show that our model performs efficiently when estimating missing entries for HRV spectra. Moreover, a refined model of matrix completion (RMC) is proposed that can be derived from correlation analysis of the HRV spectra. Two benchmark electrocardiography (ECG) datasets are retrieved and used to derive the HRV data, which are employed to evaluate the performance of our RMC method on the estimation of missing entries in the spectra. Furthermore, four different types of deep recurrent neural networks and the traditional MC method are used for a comparison study, and our RMC method obtains the least estimation error with different masking ratios. The experimental studies and comparison results demonstrate the advantages and robustness of our developed method for the estimation of incomplete HRV spectra.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heart rate variability (HRV) is an important non-invasive parameter to assess the cardiac autonomic nervous system. In particular, spectrum matrices of HRV data have been widely used for physical and mental health monitoring. However, measurement uncertainties from data acquisition and physiological factors can easily affect the HRV spectrum and degrade outcomes of health monitoring. In this paper, we propose a new model for incomplete spectrum estimation of the HRV data based on matrix completion (MC). We show that our model performs efficiently when estimating missing entries for HRV spectra. Moreover, a refined model of matrix completion (RMC) is proposed that can be derived from correlation analysis of the HRV spectra. Two benchmark electrocardiography (ECG) datasets are retrieved and used to derive the HRV data, which are employed to evaluate the performance of our RMC method on the estimation of missing entries in the spectra. Furthermore, four different types of deep recurrent neural networks and the traditional MC method are used for a comparison study, and our RMC method obtains the least estimation error with different masking ratios. The experimental studies and comparison results demonstrate the advantages and robustness of our developed method for the estimation of incomplete HRV spectra.
使用低秩矩阵补全的心率变异性频谱估计
心率变异性(HRV)是评估心脏自主神经系统的重要无创参数。特别是HRV数据的谱矩阵已广泛应用于身心健康监测。然而,来自数据采集和生理因素的测量不确定性很容易影响HRV谱,降低健康监测的结果。本文提出了一种基于矩阵补全(MC)的HRV数据不完全谱估计模型。结果表明,该模型在估计HRV光谱的缺失项时是有效的。在此基础上,提出了一种基于HRV谱相关分析的矩阵补全模型。检索了两个基准心电图(ECG)数据集,并使用它们获得HRV数据,用于评估我们的RMC方法在估计谱中缺失条目方面的性能。此外,将四种不同类型的深度递归神经网络与传统的MC方法进行比较研究,我们的RMC方法在不同掩蔽比下获得了最小的估计误差。实验研究和对比结果证明了该方法对不完全HRV谱估计的优越性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信