Polynomials, Quantum Query Complexity, and Grothendieck's Inequality

S. Aaronson, A. Ambainis, Janis Iraids, M. Kokainis, Juris Smotrovs
{"title":"Polynomials, Quantum Query Complexity, and Grothendieck's Inequality","authors":"S. Aaronson, A. Ambainis, Janis Iraids, M. Kokainis, Juris Smotrovs","doi":"10.4230/LIPIcs.CCC.2016.25","DOIUrl":null,"url":null,"abstract":"We show an equivalence between 1-query quantum algorithms and representations by degree-2 polynomials. Namely, a partial Boolean function $f$ is computable by a 1-query quantum algorithm with error bounded by $\\epsilon<1/2$ iff $f$ can be approximated by a degree-2 polynomial with error bounded by $\\epsilon'<1/2$. This result holds for two different notions of approximation by a polynomial: the standard definition of Nisan and Szegedy and the approximation by block-multilinear polynomials recently introduced by Aaronson and Ambainis (STOC'2015, arXiv:1411.5729). \nWe also show two results for polynomials of higher degree. First, there is a total Boolean function which requires $\\tilde{\\Omega}(n)$ quantum queries but can be represented by a block-multilinear polynomial of degree $\\tilde{O}(\\sqrt{n})$. Thus, in the general case (for an arbitrary number of queries), block-multilinear polynomials are not equivalent to quantum algorithms. \nSecond, for any constant degree $k$, the two notions of approximation by a polynomial (the standard and the block-multilinear) are equivalent. As a consequence, we solve an open problem of Aaronson and Ambainis, showing that one can estimate the value of any bounded degree-$k$ polynomial $p:\\{0, 1\\}^n \\rightarrow [-1, 1]$ with $O(n^{1-\\frac{1}{2k}})$ queries.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2016.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We show an equivalence between 1-query quantum algorithms and representations by degree-2 polynomials. Namely, a partial Boolean function $f$ is computable by a 1-query quantum algorithm with error bounded by $\epsilon<1/2$ iff $f$ can be approximated by a degree-2 polynomial with error bounded by $\epsilon'<1/2$. This result holds for two different notions of approximation by a polynomial: the standard definition of Nisan and Szegedy and the approximation by block-multilinear polynomials recently introduced by Aaronson and Ambainis (STOC'2015, arXiv:1411.5729). We also show two results for polynomials of higher degree. First, there is a total Boolean function which requires $\tilde{\Omega}(n)$ quantum queries but can be represented by a block-multilinear polynomial of degree $\tilde{O}(\sqrt{n})$. Thus, in the general case (for an arbitrary number of queries), block-multilinear polynomials are not equivalent to quantum algorithms. Second, for any constant degree $k$, the two notions of approximation by a polynomial (the standard and the block-multilinear) are equivalent. As a consequence, we solve an open problem of Aaronson and Ambainis, showing that one can estimate the value of any bounded degree-$k$ polynomial $p:\{0, 1\}^n \rightarrow [-1, 1]$ with $O(n^{1-\frac{1}{2k}})$ queries.
多项式,量子查询复杂度,和Grothendieck不等式
我们展示了1查询量子算法与2次多项式表示之间的等价性。也就是说,部分布尔函数$f$可以用1查询量子算法计算,误差以$\epsilon<1/2$为界;而$f$可以用2次多项式近似,误差以$\epsilon'<1/2$为界。这一结果适用于两种不同的多项式近似概念:Nisan和Szegedy的标准定义,以及Aaronson和Ambainis最近引入的块多元线性多项式近似(STOC'2015, arXiv:1411.5729)。对于高次多项式,我们也给出了两个结果。首先,有一个总布尔函数,它需要$\tilde{\Omega}(n)$量子查询,但可以用一个次为$\tilde{O}(\sqrt{n})$的块多线性多项式表示。因此,在一般情况下(对于任意数量的查询),块多线性多项式并不等同于量子算法。其次,对于任意常数次$k$,用多项式逼近的两个概念(标准和块多元线性)是等价的。因此,我们解决了Aaronson和Ambainis的一个开放问题,表明人们可以用$O(n^{1-\frac{1}{2k}})$查询估计任何有界度- $k$多项式$p:\{0, 1\}^n \rightarrow [-1, 1]$的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信