Audio similarity detection algorithm based on Siamese LSTM network

Zhanli Li, Pengfei Song
{"title":"Audio similarity detection algorithm based on Siamese LSTM network","authors":"Zhanli Li, Pengfei Song","doi":"10.1109/ICSP51882.2021.9408942","DOIUrl":null,"url":null,"abstract":"The key technology of audio signal similarity detection lies in the selection of audio signal features and feature matching model. In order to improve the accuracy of the similarity calculation of audios, a method of using LSTM in the basic network part of the Siamese network is proposed. First of all, we extract the Filter banks features of the two audio signals. Then, two feature matrices are input into the network to calculate the audio similarity. Experiments show that the Siamese LSTM network using FBank features can accurately detect the similarity of two audio segments.","PeriodicalId":117159,"journal":{"name":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP51882.2021.9408942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The key technology of audio signal similarity detection lies in the selection of audio signal features and feature matching model. In order to improve the accuracy of the similarity calculation of audios, a method of using LSTM in the basic network part of the Siamese network is proposed. First of all, we extract the Filter banks features of the two audio signals. Then, two feature matrices are input into the network to calculate the audio similarity. Experiments show that the Siamese LSTM network using FBank features can accurately detect the similarity of two audio segments.
基于Siamese LSTM网络的音频相似性检测算法
音频信号相似度检测的关键技术在于音频信号特征的选择和特征匹配模型。为了提高音频相似度计算的准确性,提出了在Siamese网络的基本网络部分使用LSTM的方法。首先,提取两个音频信号的滤波器组特征。然后,将两个特征矩阵输入到网络中计算音频相似度。实验表明,使用FBank特征的Siamese LSTM网络可以准确地检测两个音频片段的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信