Comparison of silhouette shape descriptors for example-based human pose recovery

R. Poppe, M. Poel
{"title":"Comparison of silhouette shape descriptors for example-based human pose recovery","authors":"R. Poppe, M. Poel","doi":"10.1109/FGR.2006.32","DOIUrl":null,"url":null,"abstract":"Automatically recovering human poses from visual input is useful but challenging due to variations in image space and the high dimensionality of the pose space. In this paper, we assume that a human silhouette can be extracted from monocular visual input. We compare three shape descriptors that are used in the encoding of silhouettes: Fourier descriptors, shape contexts and Hu moments. An example-based approach is taken to recover upper body poses from these descriptors. We perform experiments with deformed silhouettes to test each descriptor's robustness against variations in body dimensions, viewpoint and noise. It is shown that Fourier descriptors and shape context histograms outperform Hu moments for all deformations","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

Automatically recovering human poses from visual input is useful but challenging due to variations in image space and the high dimensionality of the pose space. In this paper, we assume that a human silhouette can be extracted from monocular visual input. We compare three shape descriptors that are used in the encoding of silhouettes: Fourier descriptors, shape contexts and Hu moments. An example-based approach is taken to recover upper body poses from these descriptors. We perform experiments with deformed silhouettes to test each descriptor's robustness against variations in body dimensions, viewpoint and noise. It is shown that Fourier descriptors and shape context histograms outperform Hu moments for all deformations
基于实例的人体姿态恢复中轮廓形状描述符的比较
从视觉输入中自动恢复人体姿势是有用的,但由于图像空间的变化和姿势空间的高维性,因此具有挑战性。在本文中,我们假设可以从单目视觉输入中提取人体轮廓。我们比较了在轮廓编码中使用的三种形状描述子:傅里叶描述子、形状上下文和胡矩。采用基于实例的方法从这些描述符中恢复上半身姿势。我们对变形的轮廓进行实验,以测试每个描述符对身体尺寸、视点和噪声变化的鲁棒性。结果表明,傅里叶描述子和形状上下文直方图在所有变形中都优于Hu矩
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信