On semantic image segmentation using deep convolutional neural network with shortcuts and easy class extension

Chunlai Wang, Lukas Mauch, Ze Guo, Bin Yang
{"title":"On semantic image segmentation using deep convolutional neural network with shortcuts and easy class extension","authors":"Chunlai Wang, Lukas Mauch, Ze Guo, Bin Yang","doi":"10.1109/IPTA.2016.7821005","DOIUrl":null,"url":null,"abstract":"In this paper we examine the use of deep convolutional neural networks for semantic image segmentation, which separates an input image into multiple regions corresponding to predefined object classes. We use an encoder-decoder structure and aim to improve it in convergence speed and segmentation accuracy by adding shortcuts between network layers. Besides, we investigate how to extend an already trained model to other new object classes. We propose a new strategy for class extension with only little training data and class labels. In the experiments we use two street scene datasets to demonstrate the strength of shortcuts, to study the contextual information encoded in the learned model and to show the effectiveness of our class extension method.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper we examine the use of deep convolutional neural networks for semantic image segmentation, which separates an input image into multiple regions corresponding to predefined object classes. We use an encoder-decoder structure and aim to improve it in convergence speed and segmentation accuracy by adding shortcuts between network layers. Besides, we investigate how to extend an already trained model to other new object classes. We propose a new strategy for class extension with only little training data and class labels. In the experiments we use two street scene datasets to demonstrate the strength of shortcuts, to study the contextual information encoded in the learned model and to show the effectiveness of our class extension method.
基于深度卷积神经网络的语义图像分割研究
在本文中,我们研究了使用深度卷积神经网络进行语义图像分割,它将输入图像分离到多个对应于预定义对象类的区域。我们采用了一种编码器-解码器结构,并通过在网络层之间增加捷径来提高其收敛速度和分割精度。此外,我们还研究了如何将已经训练好的模型扩展到其他新的对象类。我们提出了一种仅使用少量训练数据和类标签进行类扩展的新策略。在实验中,我们使用两个街景数据集来展示快捷方式的力量,研究学习模型中编码的上下文信息,并展示我们的类扩展方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信