{"title":"Tracking stationary extended objects for road mapping using radar measurements","authors":"C. Lundquist, U. Orguner, T. Schon","doi":"10.1109/IVS.2009.5164312","DOIUrl":null,"url":null,"abstract":"It is getting more common that premium cars are equipped with a forward looking radar and a forward looking camera. The data is often used to estimate the road geometry, tracking leading vehicles, etc. However, there is valuable information present in the radar concerning stationary objects, that is typically not used. The present work shows how stationary objects, such as guard rails, can be modeled and tracked as extended objects using radar measurements. The problem is cast within a standard sensor fusion framework utilizing the Kalman filter. The approach has been evaluated on real data from highways and rural roads in Sweden.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
It is getting more common that premium cars are equipped with a forward looking radar and a forward looking camera. The data is often used to estimate the road geometry, tracking leading vehicles, etc. However, there is valuable information present in the radar concerning stationary objects, that is typically not used. The present work shows how stationary objects, such as guard rails, can be modeled and tracked as extended objects using radar measurements. The problem is cast within a standard sensor fusion framework utilizing the Kalman filter. The approach has been evaluated on real data from highways and rural roads in Sweden.