Uncertainty-Aware Reinforcement Learning for Safe Control of Autonomous Vehicles in Signalized Intersections

Mehrnoosh Emamifar, S. F. Ghoreishi
{"title":"Uncertainty-Aware Reinforcement Learning for Safe Control of Autonomous Vehicles in Signalized Intersections","authors":"Mehrnoosh Emamifar, S. F. Ghoreishi","doi":"10.1109/CAI54212.2023.00042","DOIUrl":null,"url":null,"abstract":"This paper proposes a reinforcement learning approach for the control of autonomous vehicles at signalized intersections. The proposed method is a modified version of the Q-learning approach that takes into account the risky scenarios that might arise in the control of an autonomous vehicle due to the inherent uncertainties in the system. The proposed algorithm enables robust and risk-aware decision-making in uncertain and sensitive environments. The proposed algorithm is evaluated in a simulated autonomous vehicle scenario, where it outperforms the standard Q-learning in terms of safety.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a reinforcement learning approach for the control of autonomous vehicles at signalized intersections. The proposed method is a modified version of the Q-learning approach that takes into account the risky scenarios that might arise in the control of an autonomous vehicle due to the inherent uncertainties in the system. The proposed algorithm enables robust and risk-aware decision-making in uncertain and sensitive environments. The proposed algorithm is evaluated in a simulated autonomous vehicle scenario, where it outperforms the standard Q-learning in terms of safety.
信号交叉口自动驾驶车辆安全控制的不确定性感知强化学习
本文提出了一种用于信号交叉口自动驾驶车辆控制的强化学习方法。所提出的方法是Q-learning方法的改进版本,该方法考虑到由于系统固有的不确定性而导致自动驾驶车辆控制中可能出现的风险场景。该算法能够在不确定和敏感的环境中实现鲁棒性和风险意识决策。该算法在模拟自动驾驶汽车场景中进行了评估,在安全性方面优于标准q学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信