Multi-Energy Smart City Urban District Planning with Robust Optimisation

M. Galici, G. Celli, E. Ghiani, S. Ruggeri, G. Pisano, F. Pilo
{"title":"Multi-Energy Smart City Urban District Planning with Robust Optimisation","authors":"M. Galici, G. Celli, E. Ghiani, S. Ruggeri, G. Pisano, F. Pilo","doi":"10.1109/UPEC55022.2022.9917602","DOIUrl":null,"url":null,"abstract":"Over the years, different energy systems have often been planned and managed independently and not always efficient and optimised. A paradigm shift towards a holistic, multi-generation approach can achieve more significant benefits by integrating the energy infrastructure for electricity, natural gas and district heating networks and creating energy hubs in the urban districts of future smart cities. In such systems, different energy carriers interact collaboratively. The number of uncertainties in multi-energy hubs requires developing optimisation planning methodologies capable of keeping the risk below acceptable values. In this context, the paper proposes a robust linear programming optimisation algorithm to solve the energy hub planning problem under uncertainty. The optimisation algorithm allows the identification of the optimal energy carriers to meet energy demands and minimise energy costs keeping the risk of failure below the allowable level. Simulation results highlight the benefits of applying the proposed approach considering a multi-energy hub structure in an urban district of the city of Cagliari (Italy).","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the years, different energy systems have often been planned and managed independently and not always efficient and optimised. A paradigm shift towards a holistic, multi-generation approach can achieve more significant benefits by integrating the energy infrastructure for electricity, natural gas and district heating networks and creating energy hubs in the urban districts of future smart cities. In such systems, different energy carriers interact collaboratively. The number of uncertainties in multi-energy hubs requires developing optimisation planning methodologies capable of keeping the risk below acceptable values. In this context, the paper proposes a robust linear programming optimisation algorithm to solve the energy hub planning problem under uncertainty. The optimisation algorithm allows the identification of the optimal energy carriers to meet energy demands and minimise energy costs keeping the risk of failure below the allowable level. Simulation results highlight the benefits of applying the proposed approach considering a multi-energy hub structure in an urban district of the city of Cagliari (Italy).
基于鲁棒优化的多能源智慧城市城区规划
多年来,不同的能源系统通常是独立规划和管理的,并不总是高效和优化的。通过整合电力、天然气和区域供热网络的能源基础设施,并在未来智慧城市的城区创建能源中心,向整体、多代方法的范式转变可以实现更显著的效益。在这样的系统中,不同的能量载体协同作用。多能源枢纽的不确定性要求开发优化规划方法,使其能够将风险保持在可接受值以下。在此背景下,本文提出了一种鲁棒线性规划优化算法来解决不确定条件下的能源枢纽规划问题。优化算法允许识别最优的能量载体,以满足能源需求,并最大限度地降低能源成本,使故障风险低于允许的水平。仿真结果强调了将所提出的方法应用于卡利亚里市(意大利)城区的多能枢纽结构的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信