A penalty function approach for simulation optimization with stochastic constraints

Liujia Hu, S. Andradóttir
{"title":"A penalty function approach for simulation optimization with stochastic constraints","authors":"Liujia Hu, S. Andradóttir","doi":"10.1109/WSC.2014.7020201","DOIUrl":null,"url":null,"abstract":"This paper is concerned with continuous simulation optimization problems with stochastic constraints. Thus both the objective function and constraints need to be estimated via simulation. We propose an Adaptive Search with Discarding and Penalization (ASDP) method for solving this problem. ASDP utilizes the penalty function approach from deterministic optimization to convert the original problem into a series of simulation optimization problems without stochastic constraints. We present conditions under which the ASDP algorithm converges almost surely, and conduct numerical studies aimed at assessing its efficiency.","PeriodicalId":446873,"journal":{"name":"Proceedings of the Winter Simulation Conference 2014","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Winter Simulation Conference 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2014.7020201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is concerned with continuous simulation optimization problems with stochastic constraints. Thus both the objective function and constraints need to be estimated via simulation. We propose an Adaptive Search with Discarding and Penalization (ASDP) method for solving this problem. ASDP utilizes the penalty function approach from deterministic optimization to convert the original problem into a series of simulation optimization problems without stochastic constraints. We present conditions under which the ASDP algorithm converges almost surely, and conduct numerical studies aimed at assessing its efficiency.
随机约束下仿真优化的罚函数方法
本文研究具有随机约束的连续仿真优化问题。因此,需要通过仿真来估计目标函数和约束条件。针对这一问题,我们提出了一种带有丢弃和惩罚的自适应搜索(ASDP)方法。ASDP利用确定性优化中的罚函数方法,将原问题转化为一系列无随机约束的模拟优化问题。我们提出了ASDP算法几乎肯定收敛的条件,并进行了旨在评估其效率的数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信