Hyper: Distributed Cloud Processing for Large-Scale Deep Learning Tasks

Davit Buniatyan
{"title":"Hyper: Distributed Cloud Processing for Large-Scale Deep Learning Tasks","authors":"Davit Buniatyan","doi":"10.1109/CSITechnol.2019.8895139","DOIUrl":null,"url":null,"abstract":"Training and deploying deep learning models in real-world applications require processing large amounts of data. This is a challenging task when the amount of data grows to a hundred terabytes, or even, petabyte-scale. We introduce a hybrid distributed cloud framework with a unified view to multiple clouds and an on-premise infrastructure for processing tasks using both CPU and GPU compute instances at scale. The system implements a distributed file system and failure-tolerant task processing scheduler, independent of the language and Deep Learning framework used. It allows to utilize unstable cheap resources on the cloud to significantly reduce costs. We demonstrate the scalability of the framework on running pre-processing, distributed training, hyperparameter search and large-scale inference tasks utilizing 10,000 CPU cores and 300 GPU instances with overall processing power of 30 petaflops.12","PeriodicalId":414834,"journal":{"name":"2019 Computer Science and Information Technologies (CSIT)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computer Science and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSITechnol.2019.8895139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Training and deploying deep learning models in real-world applications require processing large amounts of data. This is a challenging task when the amount of data grows to a hundred terabytes, or even, petabyte-scale. We introduce a hybrid distributed cloud framework with a unified view to multiple clouds and an on-premise infrastructure for processing tasks using both CPU and GPU compute instances at scale. The system implements a distributed file system and failure-tolerant task processing scheduler, independent of the language and Deep Learning framework used. It allows to utilize unstable cheap resources on the cloud to significantly reduce costs. We demonstrate the scalability of the framework on running pre-processing, distributed training, hyperparameter search and large-scale inference tasks utilizing 10,000 CPU cores and 300 GPU instances with overall processing power of 30 petaflops.12
Hyper:大规模深度学习任务的分布式云处理
在实际应用中训练和部署深度学习模型需要处理大量数据。当数据量增长到100 tb甚至pb级时,这是一项具有挑战性的任务。我们引入了一个混合分布式云框架,该框架具有对多个云的统一视图,以及用于大规模使用CPU和GPU计算实例处理任务的本地基础设施。该系统实现了分布式文件系统和容错任务处理调度程序,独立于所使用的语言和深度学习框架。它允许利用云上不稳定的廉价资源来显著降低成本。我们展示了该框架在运行预处理、分布式训练、超参数搜索和大规模推理任务上的可扩展性,利用10,000个CPU内核和300个GPU实例,总处理能力为30千万亿次
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信