On the Regional Controllability for Hadamard-Caputo Fractional Ultra-Slow Diffusion Processes

Ruiyang Cai, Fudong Ge, Y. Chen, C. Kou
{"title":"On the Regional Controllability for Hadamard-Caputo Fractional Ultra-Slow Diffusion Processes","authors":"Ruiyang Cai, Fudong Ge, Y. Chen, C. Kou","doi":"10.2139/ssrn.3282725","DOIUrl":null,"url":null,"abstract":"In this article, we address the regional controllability problem for ultra-slow diffusion processes governed by Hadamard-Caputo time fractional diffusion systems. Some necessary and sufficient conditions on both regional exact controllability and regional approximate controllability of the considered systems are first obtained. Secondly, we provide a necessary and sufficient condition on the minimum number of the actuators to achieve the regional approximate controllability. Moreover, by applying the Hilbert Uniqueness Method (HUM), the optimal actuators with minimum energy can be chosen among the whole admissible ones. Finally, an example is given to illustrate our results.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3282725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, we address the regional controllability problem for ultra-slow diffusion processes governed by Hadamard-Caputo time fractional diffusion systems. Some necessary and sufficient conditions on both regional exact controllability and regional approximate controllability of the considered systems are first obtained. Secondly, we provide a necessary and sufficient condition on the minimum number of the actuators to achieve the regional approximate controllability. Moreover, by applying the Hilbert Uniqueness Method (HUM), the optimal actuators with minimum energy can be chosen among the whole admissible ones. Finally, an example is given to illustrate our results.
Hadamard-Caputo分数阶超慢扩散过程的区域可控性
在本文中,我们讨论了由Hadamard-Caputo时间分数扩散系统控制的超慢扩散过程的区域可控性问题。首先得到了所考虑系统的区域精确可控性和区域近似可控性的几个充分必要条件。其次,给出了系统实现区域近似可控的最小执行器个数的充分必要条件;利用Hilbert唯一性方法,从所有可允许的执行器中选出能量最小的最优执行器。最后,给出了一个算例来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信