Exploratory Data Analysis & Booking Cancelation Prediction on Hotel Booking Demands Datasets

Pujo Hari Saputro, H. Nanang
{"title":"Exploratory Data Analysis & Booking Cancelation Prediction on Hotel Booking Demands Datasets","authors":"Pujo Hari Saputro, H. Nanang","doi":"10.47738/JADS.V2I1.20","DOIUrl":null,"url":null,"abstract":"Online ordering is the latest breakthrough in the hospitality industry, but when it comes to booking cancellations, it has a negative impact on it. To reduce and anticipate an increase in the number of booking cancellations, we developed a booking cancellations prediction model using machine learning interpretable algorithms for hotels. Both models used Random Forest and the Extra Tree Classifier share the highest precision ratios, Random Forest on the other hand has the highest recall ratio, this model predicted 79% of actual positive observations. These results prove that it is possible to predict booking cancellations with high accuracy. These results can also help hotel owners or hotel managers to predict better predictions, improve cancellation regulations, and create new tactics in business.","PeriodicalId":341738,"journal":{"name":"Journal of Applied Data Sciences","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Data Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47738/JADS.V2I1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Online ordering is the latest breakthrough in the hospitality industry, but when it comes to booking cancellations, it has a negative impact on it. To reduce and anticipate an increase in the number of booking cancellations, we developed a booking cancellations prediction model using machine learning interpretable algorithms for hotels. Both models used Random Forest and the Extra Tree Classifier share the highest precision ratios, Random Forest on the other hand has the highest recall ratio, this model predicted 79% of actual positive observations. These results prove that it is possible to predict booking cancellations with high accuracy. These results can also help hotel owners or hotel managers to predict better predictions, improve cancellation regulations, and create new tactics in business.
基于酒店预订需求数据集的探索性数据分析和预订取消预测
在线订餐是酒店业的最新突破,但当涉及到取消预订时,它对酒店业产生了负面影响。为了减少和预测预订取消数量的增加,我们为酒店开发了一个使用机器学习可解释算法的预订取消预测模型。两个模型使用随机森林和额外树分类器共享最高的精度比,另一方面随机森林具有最高的召回率,该模型预测了79%的实际正观测值。这些结果证明,预测预订取消的准确性很高是可能的。这些结果还可以帮助酒店业主或酒店经理进行更好的预测,改进取消规定,并在业务中创造新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信